共查询到20条相似文献,搜索用时 15 毫秒
1.
Application of silver nanoparticles to the chemiluminescence determination of cefditoren pivoxil using the luminol–ferricyanide system 下载免费PDF全文
A new simple, accurate and sensitive sequential injection analysis chemiluminescence (CL) detection method for the determination of cefditoren pivoxil (CTP) has been developed. The developed method was based on the enhancement effect of silver nanoparticles on the CL signal arising from a luminol–potassium ferricyanide reaction in the presence of CTP. The optimum conditions relevant to the effect of luminol, potassium ferricyanide and silver nanoparticle concentrations were investigated. The proposed method showed linear relationships between relative CL intensity and the investigated drug concentration at the range 0.001–5000 ng/mL, (r = 0.9998, n = 12) with a detection limit of 0.5 pg/mL and quantification limit of 0.001 ng/mL. The relative standard deviation was 1.6%. The proposed method was employed for the determination of CTP in bulk drug, in its pharmaceutical dosage forms and biological fluids such as human serum and urine. The interference of some common additive compounds such as glucose, lactose, starch, talc and magnesium stearate was investigated. In addition, the interference of some related cephalosporins was tested. No interference was recorded. The obtained sequential injection analysis‐CL results were statistically compared with those from a reported method and did not show any significant differences. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
2.
A novel flow injection analysis‐direct chemiluminescence (FI‐CL) method has been developed for determination of trace amounts of dopamine (DA) based on the enhancing effect of DA on the CL reaction of luminol with an Ag(III) complex in alkaline solution. Under optimum conditions, CL intensities are proportional to the concentration of DA in the range of 1.0 × 10?10 to 4.0 × 10?8 mol L?1. The detection limit is 3.0 × 10?11 mol L?1 for DA (3s), with a relative standard deviation (n = 13) of 2.3% for 1.0 × 10?8 mol L?1 DA. This method has also been applied for the determination of DA in commercial pharmaceutical injection samples. On the basis of the CL spectra and the results of the free‐radical trapping experiment of this work, a reaction mechanism for this CL reaction is proposed and discussed. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
3.
Determination of ampicillin sodium using the cupric oxide nanoparticles–luminol–H2O2 chemiluminescence reaction 下载免费PDF全文
A simple and sensitive chemiluminescence (CL) method has been developed for the determination of ampicillin sodium at submicromolar levels. The method is based on the inhibitory effect of ampicillin sodium on the cupric oxide nanoparticles (CuO NPs)–luminol–H2O2 CL reaction. Experimental parameters affecting CL inhibition including concentrations of CuO NPs, luminol, H2O2 and NaOH were optimized. Under optimum conditions, the calibration plot was linear in the analyte concentration range 4.0 × 10‐7–4.0 × 10‐6 mol/L. The limit of detection was 2.6 × 10‐7 mol/L and the relative standard deviation (RSD) for six replicate determinations of 1 × 10‐6 mol/L ampicillin sodium was 4.71%. Also, X–ray diffraction (XRD) and transmission electron microscopy (TEM) analysis were employed to characterize the CuO NPs. The utility of the proposed method was demonstrated by determining ampicillin sodium in pharmaceutical preparation. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
4.
Trace analysis of N‐acetyl‐L‐cysteine using luminol–H2O2 chemiluminescence system catalyzed by silver nanoparticles 下载免费PDF全文
N‐Acetyl‐L‐cysteine (NAC) can inhibit the luminol–H2O2, reaction, which is catalyzed by silver nanoparticles. Based on this phenomenon a new method was developed for NAC determination. Under optimum conditions, a linear relationship between chemiluminescence intensity and NAC concentration was found in the range 0.034–0.98 µg/mL. The detection limit was 0.010 µg/mL (S/N =3), and the relative standard deviation (RSD) was <5% for 0.480 µg/mL NAC (n =5). This simple, sensitive and inexpensive method has been applied to measure the concentration of NAC in pharmaceutical tablets. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
5.
Systematic studies on phenol derivatives facilitates an explanation of the enhancement or inhibition of the luminol–H2O2–horseradish peroxidase system chemiluminescence. Factors that govern the enhancement are the one-electron reduction potentials of the phenoxy radicals (PhO•/PhOH) vs. luminol radicals (L•/LH−) and the reaction rates of the phenol derivatives with the compounds of horseradish peroxidase (HRP-I and HRP-II). Only compounds with radicals with a similar or greater reduction potential than luminol at pH 8.5 (0.8 V) can act as enhancers. Radicals with reduction potentials lower than luminol behave in a different way, because they destroy luminol radicals and inhibit chemiluminescence. The relations between the reduction potential, reaction rates and the Hammett constant of the substituent in a phenol suggest that 4-substituted phenols with Hammett constants (σ) for their substituents similar or greater than 0.20 are enhancers of the luminol–H2O2–horseradish peroxidase chemiluminescence. In contrast, those phenols substituted in position 4 for substituents with Hammett constants (σ) lower than 0.20 are inhibitors of chemiluminescence. On the basis of these studies, the structure of possible new enhancers was predicted. © 1998 John Wiley & Sons, Ltd. 相似文献
6.
《Luminescence》2003,18(1):42-48
Oscillating chemical reactions are complex systems involving a large number of chemical species. In oscillating chemical reactions some species, usually reaction intermediates, exhibit fluctuation in concentration. Visible oscillating chemiluminescence, produced by the addition of luminol (3‐aminophthalhydrazide) to the oscillating system H2O2–KSCN–CuSO4–NaOH, was investigated. In this study the effect of varying the concentration of H2O2, KSCN, CuSO4, NaOH and luminol was investigated in a batch reactor. We showed that the concentration of all components involved in the oscillating chemilumenscent reaction influenced the light intensity and the oscillation period. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
7.
A post‐chemiluminescence (PCL) phenomenon was observed when chloramphenicol was injected into a mixture of luminol and potassium periodate after the chemiluminescence (CL) reaction of luminol–potassium periodate had finished. The possible reaction mechanism was proposed based on studies of the CL kinetic characteristics, the CL spectra, the fluorescence spectra and the UV‐vis absorption spectra of the related substances. Based on the PCL reaction, a rapid and sensitive method for the determination of chloramphenicol was established. The linear response range was 6.0 × 10?7–1.0 × 10?5 mol/L, with a correlation coefficient of 0.9986. The relative standard deviation (RSD) for 5.0 × 10?6 mol/L chloramphenicol was 2.3% (n = 11). The detection limit was 1.6 × 10?7 mol/L. The method has been applied to the determination of chloramphenicol in pharmaceutical samples with satisfactory results. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
8.
The chemiluminescence of the luminol–H2O2–horseradish peroxidase system is increased by fluorescein. Fluorescein produces an enhancement of the luminol chemiluminescence similar to that of phenolphthalein, by an energy transfer process from luminol to fluorescein. The maximum intesity and the total chemiluminescence emission (between 380 and 580 nm) of luminol with fluorescein was more than three times greater than without fluorescein; however, the emission duration was shorter. The emission spectra in the presence of fluorescein had two maxima (425 and 535 nm) and the enhancement was dependent on pH and fluorescein concentration. A mechanism is proposed to explain these effects. © 1997 John Wiley & Sons, Ltd. 相似文献
9.
The chemiluminescence (CL) behaviour of the luminol–potassium periodate system enhanced by CdTe quantum dots capped with thioglycolic acid (TGA–CdTe QDs) was studied using kinetic experiments, CL spectra, UV–vis absorption spectra and fluorescence spectra. The production of oxygen‐containing reactant intermediates (O2?? and OH?) in the present CL system was verified by CL. The possible CL mechanism was discussed in detail. Furthermore, theophylline (THP) was determined based on its enhancement of the CL intensity of the CdTe QDs–luminol–potassium periodate system coupled with a flow‐injection technique. Under these optimized conditions, the linear range was found to be from 1.0 × 10?8 to 1.0 × 10?5 g/mL with a detection limit of 2.8 × 10?9 g/mL (3σ). The recoveries for the determination of THP in tablets were from 98.2 to 99.6%. 相似文献
10.
A novel phenomenon of dual chemiluminescence (CL) was observed for the KIO4–luminol–Mn2+ system in strong alkaline solutions using the stopped‐flow technique. Scavenging study of the reactive oxygen species (ROS) suggested that the two CL peaks originated from different CL pathways precipated by distinct ROS (O2? and ?OH for the first peak, mainly 1O2 for the second peak). Generation of these ROS at different time intervals from the reactions involving IO4?, O2, and Mn2+ and their subsequent reactions with luminol induced the intense CL emission. The relative intensity of the two CL peaks can be tuned over a wide range by varying the concentrations of Mn2?, luminol and KIO4. Because of the involvement of different ROS in each pathway, the two CL peaks could respond quite differently to various substances. Moreover, variation of the intensity ratio of the two CL peaks altered the relative proportions of the corresponding ROS, thereby changing their responses to a given substance. The dual CL emission acts like a pair of tunable probes and it is believed that this CL system has great potential in analytical applications. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
11.
Platinum colloids prepared by the reduction of hexachloroplatinic acid with citrate in the presence of different stabilizers were found to enhance the chemiluminescence (CL) of the luminol-H(2)O(2) system, and the most intensive CL signals were obtained with citrate-protected Pt colloids synthesized with citrate as both a reductant and a stabilizer. Light emission was intense and reproducible. Transmission electron microscopy and X-ray photoelectron spectroscopy studies were conducted before and after the CL reaction to investigate the possible CL enhancement mechanism. It is suggested that this CL enhancement is attributed to the catalysis of platinum nanoparticles, which could accelerate the electron-transfer process and facilitate the CL radical generation in aqueous solution. The effects of Pt colloids prepared by the hydroborate reduction were also investigated. The application of the luminol-H(2)O(2)-Pt colloids system was exploited for the determination of compounds such as uric acid, ascorbic acid, phenols and amino acids. 相似文献
12.
André R. T. S. Araujo Fernando Maya M. Lúcia M. F. S. Saraiva José L. F. C. Lima José M. Estela Víctor Cerdà 《Luminescence》2011,26(6):571-578
In this work, an automated flow‐based procedure for the screening of the effect of the different phenolic compounds on the chemiluminescence (CL) luminol–hydrogen peroxide–horseradish peroxidase (HRP) system is presented. This procedure involves the combination of multisyringe flow injection analysis (MFSIA) and sequential injection analysis (SIA) techniques and exploits the ability of the different subgroups of phenols, such as cholorophenols, nitrophenols, methylphenols and polyphenols, to enhance or inhibit the described CL system. The implementation of this reaction in the SIA–MSFIA system enabled favourable and precise conditions to evaluate the effect of phenolic compounds, as it involves an in‐line reaction between the phenolic derivative, hydrogen peroxide and peroxidase and subsequent oxidized HRP intermediates generation prior to the fast reaction with the chemiluminogenic reagent. Several studies were then performed with the aim of establishing the appropriate flow system configuration and reaction conditions. It was shown that phenol and chlorophenols produce an enhanced CL response and nitrophenols, methylphenols and polyphenols are inhibitors within the range of concentrations studied (1–100 mg/L). Based on these studies, the developed method was applied to the determination of total polyphenol and phenol content in wine/grape seeds and water samples, respectively, and the results obtained showed good agreement with those furnished by the corresponding Folin–Ciocalteu and 4‐aminoantipyrine reference methods. The developed approach is further pursued by designing an automated generic tool for performing studies of peroxidase‐catalysed CL reactions of luminol focused on the detection of compounds that will affect the rate of those reactions. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
13.
A novel chemiluminescence (CL) method was developed for the determination of 10‐hydroxycamptothecin(HCPT) based on the CL reaction between [Ag(HIO6)2]5? and luminol in alkaline solution. CL emission of Ag(III) complex–luminol in alkaline medium was very different from that in acidic medium. A possible mechanism of enhanced CL emission was suggested. The enhanced effect of HCPT on CL emission of the [Ag(HIO6)2]5?–luminol system was found. The enhanced degree of CL emission was proportional to HCPT concentration. The effect of the reaction conditions on CL emission was examined. Under optimal conditions, the limit of detection was 6.5 × 10?9 g mL?1. The proposed method was applied for the determination of HCPT in real samples with the recoveries of 93.2–109% with the RSD of 1.7–3.3%. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
14.
A. Navas Díaz F. García Sanchez J. A. Gonzlez García V. Bracho Del Rio 《Luminescence》1995,10(5):285-289
2-Naphthyl acetate acts as a pro-enhancer of the luminol–H2O2–horseradish peroxidase reaction. Cholinesterase hydrolyses the bound acetyl group and produces 2-naphthol, and this compound is an enhancer of the chemiluminescent reaction. We studied the kinetics of chemiluminescent emission and the influence of 2-naphthyl acetate and cholinesterase enzyme concentration. The cholinesterase concentration versus chemiluminescence intensity maximum was linear for cholinesterase between 0 and 181 μU/mL, with a detection limit of 8 μU/mL and a relative standard deviation of 9.5% (n = 3), for a sample containing 90.67 μU/mL of cholinesterase. 相似文献
15.
Visible oscillating chemiluminescence (CL) of luminol–H2O2–KSCN–CuSO4 was studied using the organic base (2‐hydroxyethyl)trimethylammonium hydroxide. The effect of concentrations of luminol, H2O2, KSCN, CuSO4 and the base were investigated in a batch reactor. This report shows how the concentration of components involved in the oscillating CL system influenced the oscillation period, light amplitude and total time of light emission. The oscillating CL with different bases was also investigated. Results indicated that using 2‐HETMAOH causes regular oscillating CL with nearly the same oscillating period. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
16.
CoFe2O4 nanoparticles (NPs) could stimulate the weak chemiluminescence (CL) system of luminol and AgNO3, resulting in a strong CL emission. The UV–visible spectra, X‐ray photoelectron spectra and TEM images of the investigated system revealed that AgNO3 was reduced by luminol to Ag in the presence of CoFe2O4 NPs and the formed Ag covered the surface of CoFe2O4 NPs, resulting in CoFe2O4–Ag core–shell nanoparticles. Investigation of the CL reaction kinetics demonstrated that the reaction among luminol, AgNO3 and CoFe2O4 NPs was fast at the beginning and slowed down later. The CL spectra of the luminol ? AgNO3 ? CoFe2O4 NPs system indicated that the luminophor was still an electronically excited 3‐aminophthalate anion. A CL mechanism has been postulated. When the CoFe2O4 NPs were injected into the mixture of luminol and AgNO3, they catalyzed the reduction of AgNO3 by luminol to produce luminol radicals and Ag, which immediately covered the CoFe2O4 NPs to form CoFe2O4–Ag core–shell nanoparticles, and the luminol radicals reacted with the dissolved oxygen, leading to a strong CL emission. With the continuous deposition of Ag on the surface of CoFe2O4 NPs, the catalytic activity of the core–shell nanoparticles was inhibited and a decrease in CL intensity was observed and also a slow growth of shell on the nanoparticles. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
17.
Stopped‐flow time courses for chemiluminescence (CL) of the KIO4‐luminol‐Mn2+system showed an instantaneous jump in initial signal followed by two distinct bands. A kinetic model of the form with ten adjustable parameters was proposed to account for CL intensity (I) versus time (t) profiles. The three terms in the model represent the three CL bands. Each band was comprised of a rise part and an exponential decay corresponding to the formation and deactivation of the CL emitter. CL bands could have originated from different CL pathways with the participation of reactive species such as O2?, ?OH and 1O2 generated in the reactions involving IO4?, O2 and Mn2+. Subsequent reactions of these reactive species with luminol induced CL emissions. Simulation parameters together with peak positions and intensities of the three CL bands were found to vary in different manners by changing conditions such as reagent concentration, pH and temperature. The temperature‐dependence of the rate constants yielded activation energies of 73.2 ± 2.8, 70.1 ± 2.4 and 67.2 ± 1.2 kJ?mol‐1 for the three decay processes. Moreover, different substances exhibited a significant influence on the three CL bands and their simulation parameters. The numerous parameters and characteristics of CL emissions could serve as multiple probes for detecting analytes, making this system promising for potential analytical applications. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
18.
A new chemiluminescence (CL) reaction was observed when chloramphenicol solution was injected into the mixture after the end of the reaction of alkaline luminol and sodium periodate or sodium periodate was injected into the reaction mixture of chloramphenicol and alkaline luminol. This reaction is described as an order‐transform second‐chemiluminescence (OTSCL) reaction. The OTSCL method combined with a flow‐injection technique was applied to the determination of chloramphenicol. The optimum conditions for the order‐transform second‐chemiluminescence emission were investigated. A mechanism for OTSCL has been proposed on the basis of the chemiluminescence kinetic characteristics, the UV‐visible spectra and the chemiluminescent spectra. Under optimal experimental conditions, the CL response is proportional to the concentration of chloramphenicol over the range 5.0 × 10?7–5.0 × 10?5 mol/L with a correlation coefficient of 0.9969 and a detection limit of 6.0 × 10?8 mol/L (3σ). The relative standard deviation (RSD) for 11 repeated determinations of 5.0 × 10?6 mol/L chloramphenicol is 1.7%. The method has been applied to the determination of chloramphenicol in pharmaceutical samples with satisfactory results. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
19.
We studied the chemiluminescence (CL) oxidation of phenyl hydrazine–luminol with various organic and inorganic peroxides. Maximum CL intensity for this system was obtained for t‐butylhydroperoxide. The enhancement in CL depended strongly on pH and was greatest at pH 12.5. The solvent drastically enhanced the CL intensity. DMSO was found to increase the CL intensity many‐fold as compared to acetonitrile and water. The effect of temperature on CL intensity has also been studied. The CL spectra revealed a broad peak at 425 nm, which suggests excited 3‐aminophthalate ion as the luminophor. A mechanism to explain the reactions is suggested. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
20.
Cupric oxide nanoparticles‐enhanced chemiluminescence method for measurement of β‐lactam antibiotics 下载免费PDF全文
A simple, sensitive cupric oxide nanoparticles (CuO NPs) enhanced chemiluminescence (CL) method was developed for the measurement of β‐lactam antibiotics, including amoxicillin and cefazolin sodium. The method was based on suppression of the CuO NPs–luminol–H2O2 CL reaction by β‐lactam antibiotics. Experimental parameters that influenced the inhibitory effect of the antibiotic drugs on the CL system, such as NaOH (mol/L), luminol (µmol/L), H2O2 (mol/L) and CuO NPs (mg/L) concentrations, were optimized. Calibration graphs were linear and had dynamic ranges of 1.0 × 10–6 to 8.0 × 10–6 mol/L and 3.0 × 10–5 to 5.0 × 10–3 mol/L for amoxicillin and cefazolin sodium, respectively, with corresponding detection limits of 7.9 × 10–7 mol/L and 1.8 × 10–5 mol/L. The relative standard deviations of five replicate measurements of 5.0 × 10–6 amoxicillin and 5 × 10–4 cefazolin sodium were 5.43 and 5.01%, respectively. The synthesized CuO NPs were characterized by X‐ray diffraction (XRD) and transmission electronmicroscopy (TEM). The developed approach was exploited successfully to measure antibiotics in pharmaceutical preparations. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献