共查询到20条相似文献,搜索用时 0 毫秒
1.
Nora M. Bello Juan P. Steibel Robert J. Tempelman 《Biometrical journal. Biometrische Zeitschrift》2010,52(3):297-313
Bivariate mixed effects models are often used to jointly infer upon covariance matrices for both random effects ( u ) and residuals ( e ) between two different phenotypes in order to investigate the architecture of their relationship. However, these (co)variances themselves may additionally depend upon covariates as well as additional sets of exchangeable random effects that facilitate borrowing of strength across a large number of clusters. We propose a hierarchical Bayesian extension of the classical bivariate mixed effects model by embedding additional levels of mixed effects modeling of reparameterizations of u‐ level and e ‐level (co)variances between two traits. These parameters are based upon a recently popularized square‐root‐free Cholesky decomposition and are readily interpretable, each conveniently facilitating a generalized linear model characterization. Using Markov Chain Monte Carlo methods, we validate our model based on a simulation study and apply it to a joint analysis of milk yield and calving interval phenotypes in Michigan dairy cows. This analysis indicates that the e ‐level relationship between the two traits is highly heterogeneous across herds and depends upon systematic herd management factors. 相似文献
2.
Miao‐Yu Tsai 《Biometrical journal. Biometrische Zeitschrift》2015,57(2):234-253
The problem of variable selection in the generalized linear‐mixed models (GLMMs) is pervasive in statistical practice. For the purpose of variable selection, many methodologies for determining the best subset of explanatory variables currently exist according to the model complexity and differences between applications. In this paper, we develop a “higher posterior probability model with bootstrap” (HPMB) approach to select explanatory variables without fitting all possible GLMMs involving a small or moderate number of explanatory variables. Furthermore, to save computational load, we propose an efficient approximation approach with Laplace's method and Taylor's expansion to approximate intractable integrals in GLMMs. Simulation studies and an application of HapMap data provide evidence that this selection approach is computationally feasible and reliable for exploring true candidate genes and gene–gene associations, after adjusting for complex structures among clusters. 相似文献
3.
Battauz M 《Biometrical journal. Biometrische Zeitschrift》2011,53(3):411-425
Likelihood analysis for regression models with measurement errors in explanatory variables typically involves integrals that do not have a closed-form solution. In this case, numerical methods such as Gaussian quadrature are generally employed. However, when the dimension of the integral is large, these methods become computationally demanding or even unfeasible. This paper proposes the use of the Laplace approximation to deal with measurement error problems when the likelihood function involves high-dimensional integrals. The cases considered are generalized linear models with multiple covariates measured with error and generalized linear mixed models with measurement error in the covariates. The asymptotic order of the approximation and the asymptotic properties of the Laplace-based estimator for these models are derived. The method is illustrated using simulations and real-data analysis. 相似文献
4.
An important problem in agronomy is the study of longitudinal data on the growth curve of the weight of cattle through time, possibly taking into account the effect of other explanatory variables such as treatments and time. In this paper, a Bayesian approach for analysing longitudinal data is proposed. It takes into account regression structures on the mean and the variance‐covariance matrix of normal observations. The approach is based on the modeling strategy suggested by Pourahmadi (1999, Biometrika 86, 667–690). After revising this methodology, we present the Bayesian approach used to fit the models, based on a generalization of the Metropolis‐Hastings algorithm of Cepeda and Gamerman (2000, Brazilian Journal of Probability and Statistics, 14 , 207–221). The approach is used to the study of growth and development of a group of deaf children. The paper is concluded with a few proposed extensions. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
5.
Often, the functional form of covariate effects in an additive model varies across groups defined by levels of a categorical variable. This structure represents a factor-by-curve interaction. This article presents penalized spline models that incorporate factor-by-curve interactions into additive models. A mixed model formulation for penalized splines allows for straightforward model fitting and smoothing parameter selection. We illustrate the proposed model by applying it to pollen ragweed data in which seasonal trends vary by year. 相似文献
6.
Motivated by a study of human papillomavirus infection in women, we present a Bayesian binomial regression analysis in which the response is subject to an unconstrained misclassification process. Our iterative approach provides inferences for the parameters that describe the relationships of the covariates with the response and for the misclassification probabilities. Furthermore, our approach applies to any meaningful generalized linear model, making model selection possible. Finally, it is straightforward to extend it to multinomial settings. 相似文献
7.
Hall DB 《Biometrics》2000,56(4):1030-1039
In a 1992 Technometrics paper, Lambert (1992, 34, 1-14) described zero-inflated Poisson (ZIP) regression, a class of models for count data with excess zeros. In a ZIP model, a count response variable is assumed to be distributed as a mixture of a Poisson(lambda) distribution and a distribution with point mass of one at zero, with mixing probability p. Both p and lambda are allowed to depend on covariates through canonical link generalized linear models. In this paper, we adapt Lambert's methodology to an upper bounded count situation, thereby obtaining a zero-inflated binomial (ZIB) model. In addition, we add to the flexibility of these fixed effects models by incorporating random effects so that, e.g., the within-subject correlation and between-subject heterogeneity typical of repeated measures data can be accommodated. We motivate, develop, and illustrate the methods described here with an example from horticulture, where both upper bounded count (binomial-type) and unbounded count (Poisson-type) data with excess zeros were collected in a repeated measures designed experiment. 相似文献
8.
9.
广义岭回归在家禽育种值估计中的应用 总被引:3,自引:1,他引:3
讨论了岭回归方法应用于混合线性模型方程组中估计家禽育种值的方法,其实质是将传统的混合线性模型方程组理解为一种广义岭回归估计,为确定遗传参数的估计提供了一种途径;同时,以番鸭为例,考虑了一个性状和两个固定效应,采用广义岭回归法对公番鸭育种值进行了估计,并与最佳线性无偏预测法(BLUP 法)进行了比较,结果表明,广义岭回归方法和BLUP 法估计的育种值及其排序非常接近,其相关系数和秩相关系数分别达到了0.998~(**)和0.986~(**),且采用广义岭回归法预测的误差率低(在±10%以内);表明在混合线性模型方程组中使用广义岭回归估计动物育种值的方法具有可行性,并可省去估计遗传参数的过程,使BLUP 法在动物选育中的应用更具实用性. 相似文献
10.
Ghosh D 《Biostatistics (Oxford, England)》2007,8(2):402-413
In the assessment of clinical utility of biomarkers, case-control studies are often undertaken based on existing serum samples. A common assumption made in these studies is that higher levels of the biomarker are associated with increased disease risk. In this article, we consider methods of analysis in which monotonicity is incorporated in associating the biomarker and the clinical outcome. We consider the roles of discrimination versus association and assess methods for both goals. In addition, we propose a semiparametric isotonic regression model for binary data and describe a simple estimation procedure as well as attendant inferential procedures. We apply the various methodologies to data from a prostate cancer study involving a serum biomarker. 相似文献
11.
Kohji Yamamura Hiroyuki Matsuda Hiroyuki Yokomizo Koichi Kaji Hiroyuki Uno Katsumi Tamada Toshio Kurumada Takashi Saitoh Hirofumi Hirakawa 《Population Ecology》2008,50(2):131-144
We have estimated the number of sika deer, Cervus nippon, in Hokkaido, Japan, with the aim of developing a management program that will reduce the level of agricultural damage caused by these deer. A population index that is defined by the population divided by the population of 1993 is first estimated from the data obtained during a spotlight survey. A generalized linear mixed model (GLMM) with corner point constraints is used in this estimation. We then estimate the population from the index by evaluating the response of index to the known amount of harvest, including hunting. A stage-structured model is used in this harvest-based estimation. It is well-known that estimates of indices suffer from large observation errors when the probability of the observation fluctuates widely; therefore, we apply state-space modeling to the harvest-based estimation to remove the observation errors. We propose the use of Bayesian estimation with uniform prior-distributions as an approximation of the maximum likelihood estimation, without permitting an arbitrary assumption that the parameters fluctuate following prior-distributions. We are able to demonstrate that the harvest-based Bayesian estimation is effective in reducing the observation errors in sika deer populations, but the stage-structured model requires many demographic parameters to be known prior to running the analyses. These parameters cannot be estimated from the observed time-series of the index if there is insufficient data. We then construct a univariate model by simplifying the stage-structured model and show that the simplified model yields estimates that are nearly identical to those obtained from the stage-structured model. This simplification of the model simultaneously clarifies which parameter is important in estimating the population. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
12.
Izabela R. C. Oliveira Geert Molenberghs Clarice G. B. Demétrio Carlos T. S. Dias Suely R. Giolo Marcela C. Andrade 《Biometrical journal. Biometrische Zeitschrift》2016,58(4):852-867
The intraclass correlation is commonly used with clustered data. It is often estimated based on fitting a model to hierarchical data and it leads, in turn, to several concepts such as reliability, heritability, inter‐rater agreement, etc. For data where linear models can be used, such measures can be defined as ratios of variance components. Matters are more difficult for non‐Gaussian outcomes. The focus here is on count and time‐to‐event outcomes where so‐called combined models are used, extending generalized linear mixed models, to describe the data. These models combine normal and gamma random effects to allow for both correlation due to data hierarchies as well as for overdispersion. Furthermore, because the models admit closed‐form expressions for the means, variances, higher moments, and even the joint marginal distribution, it is demonstrated that closed forms of intraclass correlations exist. The proposed methodology is illustrated using data from agricultural and livestock studies. 相似文献
13.
In certain diseases, outcome is the number of morbid events over the course of follow-up. In epilepsy, e.g., daily seizure counts are often used to reflect disease severity. Follow-up of patients in clinical trials of such diseases is often subject to censoring due to patients dying or dropping out. If the sicker patients tend to be censored in such trials, estimates of the treatment effect that do not incorporate the censoring process may be misleading. We extend the shared random effects approach of Wu and Carroll (1988, Biometrics 44, 175-188) to the setting of repeated counts of events. Three strategies are developed. The first is a likelihood-based approach for jointly modeling the count and censoring processes. A shared random effect is incorporated to introduce dependence between the two processes. The second is a likelihood-based approach that conditions on the dropout times in adjusting for informative dropout. The third is a generalized estimating equations (GEE) approach, which also conditions on the dropout times but makes fewer assumptions about the distribution of the count process. Estimation procedures for each of the approaches are discussed, and the approaches are applied to data from an epilepsy clinical trial. A simulation study is also conducted to compare the various approaches. Through analyses and simulations, we demonstrate the flexibility of the likelihood-based conditional model for analyzing data from the epilepsy trial. 相似文献
14.
15.
Spatial weed count data are modeled and predicted using a generalized linear mixed model combined with a Bayesian approach and Markov chain Monte Carlo. Informative priors for a data set with sparse sampling are elicited using a previously collected data set with extensive sampling. Furthermore, we demonstrate that so-called Langevin-Hastings updates are useful for efficient simulation of the posterior distributions, and we discuss computational issues concerning prediction. 相似文献
16.
幼苗是植物生活史中最脆弱的阶段,对幼苗存活影响因子的分析有助于我们更清楚的了解森林群落的天然更新机制。利用广义线性混合模型(GLMM)对八大公山常绿落叶阔叶混交林中影响幼苗存活的主要生物与非生物因子进行了研究。结果表明:(1)在群落水平上,幼苗存活与生物因子中的同种幼苗密度呈显著负相关,与非生物因子中的冠层开阔度呈显著正相关;(2)从年龄上看,4年生以下龄级的幼苗存活更容易受到同种幼苗密度的影响,与同种幼苗密度呈显著负相关;4年生及其以上的幼苗存活则主要受非生物因子影响;(3)从生活型上看,相对于常绿物种,落叶物种的幼苗存活率更容易受到同种幼苗密度的影响,也与冠层开阔度呈正相关;(4)在物种水平上,生物因子与非生物因子对不同物种幼苗存活率的影响也不相同。其中,宜昌润楠(Machilus ichangensis Rehd.et Wils.)的存活率与冠层开阔度呈正相关;薄叶山矾(Symplocos anomala Brand)幼苗的存活率与同种幼苗密度、异种大树胸高断面积、林冠开阔度、坡向均呈显著负相关,而与异种幼苗密度和海拔呈显著正相关。本研究表明影响幼苗存活的因子是多样的,而且不是随机发生的。在不同水平上影响幼苗存活的因子不同。 相似文献
17.
The multivariate binomial logit-normal distribution is a mixture distribution for which, (i) conditional on a set of success probabilities and sample size indices, a vector of counts is independent binomial variates, and (ii) the vector of logits of the parameters has a multivariate normal distribution. We use this distribution to model multivariate binomial-type responses using a vector of random effects. The vector of logits of parameters has a mean that is a linear function of explanatory variables and has an unspecified or partly specified covariance matrix. The model generalizes and provides greater flexibility than the univariate model that uses a normal random effect to account for positive correlations in clustered data. The multivariate model is useful when different elements of the response vector refer to different characteristics, each of which may naturally have its own random effect. It is also useful for repeated binary measurement of a single response when there is a nonexchangeable association structure, such as one often expects with longitudinal data or when negative association exists for at least one pair of responses. We apply the model to an influenza study with repeated responses in which some pairs are negatively associated and to a developmental toxicity study with continuation-ratio logits applied to an ordinal response with clustered observations. 相似文献
18.
19.
Alternative parameterizations and problems of identification and estimation of multivariate random effects models for categorical responses are investigated. The issues are illustrated in the context of the multivariate binomial logit-normal (BLN) model introduced by Coull and Agresti (2000, Biometrics 56, 73-80). We demonstrate that the BLN model is poorly identified unless proper restrictions are imposed on the parameters. Moreover, estimation of BLN models is unduly computationally complex. In the first application considered by Coull and Agresti, an identification problem results in highly unstable, highly correlated parameter estimates and large standard errors. A probit-normal version of the specified BLN model is demonstrated to be underidentified, whereas the BLN model is empirically underidentified. Identification can be achieved by constraining one of the parameters. We show that a one-factor probit model is equivalent to the probit version of the specified BLN model and that a one-factor logit model is empirically equivalent to the BLN model. Estimation is greatly simplified by using a factor model. 相似文献
20.
We examine issues in estimating population size N with capture-recapture models when there is variable catchability among subjects. We focus on a logistic-normal mixed model, for which the logit of the probability of capture is an additive function of a random subject and a fixed sampling occasion parameter. When the probability of capture is small or the degree of heterogeneity is large, the log-likelihood surface is relatively flat and it is difficult to obtain much information about N. We also discuss a latent class model and a log-linear model that account for heterogeneity and show that the log-linear model has greater scope. Models assuming homogeneity provide much narrower intervals for N but are usually highly overly optimistic, the actual coverage probability being much lower than the nominal level. 相似文献