首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hollow and hierarchical nanostructures have received wide attention in new‐generation, high‐performance, lithium ion battery (LIB) applications. Both TiO2 and Fe2O3 are under current investigation because of their high structural stability (TiO2) and high capacity (Fe2O3), and their low cost. Here, we demonstrate a simple strategy for the fabrication of hierarchical hollow TiO2@Fe2O3 nanostructures for the application as LIB anodes. Using atomic layer deposition (ALD) and sacrificial template‐assisted hydrolysis, the resulting nanostructure combines a large surface area with a hollow interior and robust structure. As a result, such rationally designed LIB anodes exhibit a high reversible capacity (initial value 840 mAh g?1), improved cycle stability (530 mAh g?1 after 200 cycles at the current density of 200 mA g?1), as well as outstanding rate capability. This ALD‐assisted fabrication strategy can be extended to other hierarchical hollow metal oxide nanostructures for favorable applications in electrochemical and optoelectronic devices.  相似文献   

2.
Iron oxides, such as Fe2O3 and Fe3O4, have recently received increased attention as very promising anode materials for rechargeable lithium‐ion batteries (LIBs) because of their high theoretical capacity, non‐toxicity, low cost, and improved safety. Nanostructure engineering has been demonstrated as an effective approach to improve the electrochemical performance of electrode materials. Here, recent research progress in the rational design and synthesis of diverse iron oxide‐based nanomaterials and their lithium storage performance for LIBs, including 1D nanowires/rods, 2D nanosheets/flakes, 3D porous/hierarchical architectures, various hollow structures, and hybrid nanostructures of iron oxides and carbon (including amorphous carbon, carbon nanotubes, and graphene). By focusing on synthesis strategies for various iron‐oxide‐based nanostructures and the impacts of nanostructuring on their electrochemical performance, novel approaches to the construction of iron‐oxide‐based nanostructures are highlighted and the importance of proper structural and compositional engineering that leads to improved physical/chemical properties of iron oxides for efficient electrochemical energy storage is stressed. Iron‐oxide‐based nanomaterials stand a good chance as negative electrodes for next generation LIBs.  相似文献   

3.
Polymeric carbon nitride (CN) has emerged as a promising semiconductor for energy‐related applications. However, its utilization in photo‐electrochemical cells is still very limited owing to poor electron–hole separation efficiency, short electron diffusion length, and low absorption coefficient. Here the synthesis of a highly porous carbon nitride/reduced graphene oxide (CN‐rGO) film with good photo‐electrochemical properties is reported. The CN‐rGO film exhibits long electron diffusion length and high electrochemical active surface area, good charge separation, and enhanced light‐harvesting properties. The film displays a 20‐fold enhancement of photocurrent density over pristine CN, reaching up to 75 µA cm?2 at 1.23 V versus reversible hydrogen electrode (RHE) in an alkaline solution, as well as stability over a wide pH range. Photocurrent measurements with a hole scavenger reveal a photocurrent density of 660 µA cm?2 at 1.23 V versus RHE and a quantum efficiency of 60% at 400 nm, resulting in the production of 0.8 mol h?1 g?1 of hydrogen. The substantial photo‐electrochemical activity enhancement and hydrogen production together with the low price, high electrochemical surface area, long electron diffusion length, stability under harsh condition, and tunable photophysical properties of CN materials open many possibilities for their utilization in (photo)electrochemical and electronic devices.  相似文献   

4.
High‐performance flexible energy‐storage devices have great potential as power sources for wearable electronics. One major limitation to the realization of these applications is the lack of flexible electrodes with excellent mechanical and electrochemical properties. Currently employed batteries and supercapacitors are mainly based on electrodes that are not flexible enough for these purposes. Here, a three‐dimensionally interconnected hybrid hydrogel system based on carbon nanotube (CNT)‐conductive polymer network architecture is reported for high‐performance flexible lithium ion battery electrodes. Unlike previously reported conducting polymers (e.g., polyaniline, polypyrrole, polythiophene), which are mechanically fragile and incompatible with aqueous solution processing, this interpenetrating network of the CNT‐conducting polymer hydrogel exibits good mechanical properties, high conductivity, and facile ion transport, leading to facile electrode kinetics and high strain tolerance during electrode volume change. A high‐rate capability for TiO2 and high cycling stability for SiNP electrodes are reported. Typically, the flexible TiO2 electrodes achieved a capacity of 76 mAh g–1 in 40 s of charge/discharge and a high areal capacity of 2.2 mAh cm–2 can be obtained for flexible SiNP‐based electrodes at 0.1C rate. This simple yet efficient solution process is promising for the fabrication of a variety of high performance flexible electrodes.  相似文献   

5.
Two‐dimensional (2D) nanomaterials (i.e., graphene and its derivatives, transition metal oxides and transition metal dichalcogenides) are receiving a lot attention in energy storage application because of their unprecedented properties and great diversities. However, their re‐stacking or aggregation during the electrode fabrication process has greatly hindered their further developments and applications in rechargeable lithium batteries. Recently, rationally designed hierarchical structures based on 2D nanomaterials have emerged as promising candidates in rechargeable lithium battery applications. Numerous synthetic strategies have been developed to obtain hierarchical structures and high‐performance energy storage devices based on these hierarchical structure have been realized. This review summarizes the synthesis and characteristics of three styles of hierarchical architecture, namely three‐dimensional (3D) porous network nanostructures, hollow nanostructures and self‐supported nanoarrays, presents the representative applications of hierarchical structured nanomaterials as functional materials for lithium ion batteries, lithium‐sulfur batteries and lithium‐oxygen batteries, meanwhile sheds light particularly on the relationship between structure engineering and improved electrochemical performance; and provides the existing challenges and the perspectives for this fast emerging field.  相似文献   

6.
Metal sulfide hollow nanostructures (MSHNs) have received intensive attention as electrode materials for electrical energy storage (EES) systems due to their unique structural features and rich chemistry. Here, we summarize recent research progress in the rational design and synthesis of various metal sulfide hollow micro‐/nanostructures with controlled shape, composition and structural complexity, and their applications to lithium ion batteries (LIBs) and hybrid supercapacitors (HSCs). The current understanding of hollow structure control, including single‐shelled, yolk‐shelled, multi‐shelled MSHNs, and their hybrid micro‐/nanostructures with carbon (amorphous carbon nanocoating, graphene and hollow carbon), is focused on. The importance of proper structural and compositional control on the enhanced electrochemical properties of MSHNs is emphasized. A relationship between structural and compositional engineering with improved electrochemical activity of MSHNs is sought, in order to shed some light on future electrode design trends for next‐generation EES technologies.  相似文献   

7.
Herein, a novel electrospun single‐ion conducting polymer electrolyte (SIPE) composed of nanoscale mixed poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP) and lithium poly(4,4′‐diaminodiphenylsulfone, bis(4‐carbonyl benzene sulfonyl)imide) (LiPSI) is reported, which simultaneously overcomes the drawbacks of the polyolefin‐based separator (low porosity and poor electrolyte wettability and thermal dimensional stability) and the LiPF6 salt (poor thermal stability and moisture sensitivity). The electrospun nanofiber membrane (es‐PVPSI) has high porosity and appropriate mechanical strength. The fully aromatic polyamide backbone enables high thermal dimensional stability of es‐PVPSI membrane even at 300 °C, while the high polarity and high porosity ensures fast electrolyte wetting. Impregnation of the membrane with the ethylene carbonate (EC)/dimethyl carbonate (DMC) (v:v = 1:1) solvent mixture yields a SIPE offering wide electrochemical stability, good ionic conductivity, and high lithium‐ion transference number. Based on the above‐mentioned merits, Li/LiFePO4 cells using such a SIPE exhibit excellent rate capacity and outstanding electrochemical stability for 1000 cycles at least, indicating that such an electrolyte can replace the conventional liquid electrolyte–polyolefin combination in lithium ion batteries (LIBs). In addition, the long‐term stripping–plating cycling test coupled with scanning electron microscope (SEM) images of lithium foil clearly confirms that the es‐PVPSI membrane is capable of suppressing lithium dendrite growth, which is fundamental for its use in high‐energy Li metal batteries.  相似文献   

8.
2D nanostructures with high surface area and flexibility are regarded as a promising building platform for flexible supercapacitors that are attracting tremendous attention due to their potential applications in various wearable technologies. Notably, although pseudocapacitive metal oxides are widely accepted as a very important class of electrochemically active materials, the utilization of 2D metal oxide sheets in the preparation of flexible supercapacitors is very rare. The scarcity of a suitable filler with the integrated properties of both high conductivity and excellent hydrophilicity is probably to blame. In this work, by introducing a recently discovered intriguing material, Ti3C2 sheets, a novel MnO2/Ti3C2 hybrid with a molecularly stacked structure is developed using a simple and scalable mixing and filtration method. Their individual advantages are combined in the hybrid, thus delivering excellent electrochemical performances. A highly flexible and symmetric supercapacitor based on the novel hybrid electrode manifests top‐class electrochemical performance with maximum energy and power densities of 8.3 W h kg?1 (at 221.33 W kg?1) and 2376 W kg?1 (at 3.3 W h kg?1), respectively, regardless of the various bending states, suggesting enormous possibilities for applications in future flexible and portable micropower systems.  相似文献   

9.
The green synthesis of highly conductive polyaniline by using two biological macromolecules, i.e laccase as biocatalyst, and DNA as template/dopant, was achieved in this work. Trametes versicolor laccase B (TvB) was found effective in oxidizing both aniline and its less toxic/mutagenic dimer N‐phenyl‐p‐phenylenediamine (DANI) to conductive polyaniline. Reaction conditions for synthesis of conductive polyanilines were set‐up, and structural and electrochemical properties of the two polymers were extensively investigated. When the less toxic aniline dimer was used as substrate, the polymerization reaction was faster and gave less‐branched polymer. DNA was proven to work as hard template for both enzymatically synthesized polymers, conferring them a semi‐ordered morphology. Moreover, DNA also acts as dopant leading to polymers with extraordinary conductive properties (~6 S/cm). It can be envisaged that polymer properties are magnified by the concomitant action of DNA as template and dopant. Herein, the developed combination of laccase and DNA represents a breakthrough in the green synthesis of conductive materials.  相似文献   

10.
One advantage of nonfullerene polymer solar cells (PSCs) is that they can yield high open‐circuit voltage (VOC) despite their relatively low optical bandgaps. To maximize the VOC of PSCs, it is important to fine‐tune the energy level offset between the donor and acceptor materials, but in a way not negatively affecting the morphology of the donor:acceptor (D:A) blends. Here, an effective material design rationale based on a family of D–A1–D–A2 terthiophene (T3) donor polymers is reported, which allows for the effective tuning of energy levels but without any negative impacts on the morphology of the blend. Based on a T3 donor unit combined with difluorobenzothiadiazole (ffBT) and difluorobenzoxadiazole (ffBX) acceptor units, three donor polymers are developed with highly similar morphological properties. This is particularly surprising considering that the corresponding quaterthiophene polymers based on ffBT and ffBX exhibit dramatic differences in their solubility and morphological properties. With the fine‐tuning of energy levels, the T3 polymers yield nonfullerene PSCs with a high efficiency of 9.0% for one case and with a remarkably low energy loss (0.53 V) for another polymer. This work will facilitate the development of efficient nonfullerene PSCs with optimal energy levels and favorable morphology properties.  相似文献   

11.
Hybrid nanostructures containing 1D carbon nanotubes and 2D graphene sheets have many promising applications due to their unique physical and chemical properties. In this study, the authors find Prussian blue (dehydrated sodium ferrocyanide) can be converted to N‐doped graphene–carbon nanotube hybrid materials through a simple one‐step pyrolysis process. Through field emission scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, Raman spectra, atomic force microscopy, and isothermal analyses, the authors identify that 2D graphene and 1D carbon nanotubes are bonded seamlessly during the growth stage. When used as the sulfur scaffold for lithium–sulfur batteries, it demonstrates outstanding electrochemical performance, including a high reversible capacity (1221 mA h g?1 at 0.2 C rate), excellent rate capability (458 and 220 mA h g?1 at 5 and 10 C rates, respectively), and excellent cycling stability (321 and 164 mA h g?1 at 5 and 10 C (1 C = 1673 mA g?1) after 1000 cycles). The enhancement of electrochemical performance can be attributed to the 3D architecture of the hybrid material, in which, additionally, the nitrogen doping generates defects and active sites for improved interfacial adsorption. Furthermore, the nitrogen doping enables the effective trapping of lithium polysulfides on electroactive sites within the cathode, leading to a much‐improved cycling performance. Therefore, the hybrid material functions as a redox shuttle to catenate and bind polysulfides, and convert them to insoluble lithium sulfide during reduction. The strategy reported in this paper could open a new avenue for low cost synthesis of N‐doped graphene–carbon nanotube hybrid materials for high performance lithium–sulfur batteries.  相似文献   

12.
Tuning the blend composition is an essential step to optimize the power conversion efficiency (PCE) of organic bulk heterojunction (BHJ) solar cells. PCEs from devices of unoptimized donor:acceptor (D:A) weight ratio are generally significantly lower than optimized devices. Here, two high‐performance organic nonfullerene BHJ blends PBDB‐T:ITIC and PBDB‐T:N2200 are adopted to investigate the effect of blend ratio on device performance. It is found that the PCEs of polymer‐polymer (PBDB‐T:N2200) blend are more tolerant to composition changes, relative to polymer‐molecule (PBDB‐T:ITIC) devices. In both systems, short‐circuit current density (Jsc) is tracked closely with PCE, indicating that exciton dissociation and transport strongly influence PCEs. With dilute acceptor concentrations, polymer‐polymer blends maintain high electron mobility relative to the polymer‐molecule blends, which explains the dramatic difference in PCEs between them as a function of D:A blend ratio. In addition, polymer‐polymer solar cells, especially at high D:A blend ratio, are stable (less than 5% relative loss) over 70 d under continuous heating at 80 °C in a glovebox without encapsulation. This work demonstrates that all‐polymer solar cells show advantage in operational lifetime under thermal stress and blend‐ratio resilience, which indicates their high potential for designing of stable and scalable solar cells.  相似文献   

13.
Carbon‐based nanomaterials have significantly pushed the boundary of electrochemical performance of lithium‐based batteries (LBs) thanks to their excellent conductivity, high specific surface area, controllable morphology, and intrinsic stability. Complementary to these inherent properties, various synthetic techniques have been adopted to prepare carbon‐based nanomaterials with diverse structures and different dimensionalities including 1D nanotubes and nanorods, 2D nanosheets and films, and 3D hierarchical architectures, which have been extensively applied as high‐performance electrode materials for energy storage and conversion. The present review aims to outline the structural design and composition engineering of carbon‐based nanomaterials as high‐performance electrodes of LBs including lithium‐ion batteries, lithium–sulfur batteries, and lithium–oxygen batteries. This review mainly focuses on the boosting of electrochemical performance of LBs by rational dimensional design and porous tailoring of advanced carbon‐based nanomaterials. Particular attention is also paid to integrating active materials into the carbon‐based nanomaterials, and the structure–performance relationship is also systematically discussed. The developmental trends and critical challenges in related fields are summarized, which may inspire more ideas for the design of advanced carbon‐based nanostructures with superior properties.  相似文献   

14.
Among the different nanostructures that have been demonstrated as promising materials for various applications, 3D nanostructures have attracted significant attention as building blocks for constructing high‐performance nanodevices. Particularly over the last decade, considerable research efforts have been devoted to designing, fabricating, and evaluating 3D nanostructures as electrodes for electrochemical energy conversion and storage devices. Although remarkable progress has been achieved, the performance of electrochemical energy devices based on 3D nanostructures in terms of energy conversion efficiency, energy storage capability, and device reliability still needs to be significantly improved to meet the requirements for practical applications. Rather than simply outlining and comparing different 3D nanostructures, this article systematically summarizes the general advantages as well as the existing and future challenges of 3D nanostructures for electrochemical energy conversion and storage, focusing on photoelectrochemical water splitting, photoelectrocatalytic solar‐to‐fuels conversion from nitrogen and carbon dioxide, rechargeable metal‐ion batteries, and supercapacitors. A comprehensive understanding of these advantages and challenges shall provide valuable guidelines and enlightenments to facilitate the further development of 3D nanostructured materials, and contribute to the achieving more efficient energy conversion and storage technologies toward a sustainable energy future.  相似文献   

15.
In the past decade, fuel cell technology has been moving steadily towards commercialization, with prospects of high production volumes, in particular in electric vehicle applications. However, the cost and durability of the currently‐used materials and components fall short of the requirements for large‐scale industrialization. The development of alternative, more cost‐effective materials with competitive performance and durability attributes is therefore ongoing. Radiation‐induced graft copolymerization (“radiation grafting”) is a versatile method to modify pre‐existing polymers to introduce a variety of desired functionalities, such as ion‐exchange capacity. Here, an overview of fundamentals and recent developments in the area of radiation grafted ion‐conducting polymers for application in polymer electrolyte fuel cells (PEFCs) is provided. Key aspects of polymer design are discussed, taking into consideration the radiation chemistry of base polymer materials and the adequate choice of grafting monomers for different PEFC types. Furthermore, the current status of applications in fuel cells is highlighted.  相似文献   

16.
Nanoionics has become an increasingly promising field for the future development of advanced energy conversion and storage devices, such as batteries, fuel cells, and supercapacitors. Particularly, nanostructured materials offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. However, the enhancement of the mass transport properties at the nanoscale has often been found to be difficult to implement in nanostructures. Here, an artificial mixed ionic electronic conducting oxide is fabricated by grain boundary (GB) engineering thin films of La0.8Sr0.2MnO3+δ. This electronic conductor is converted into a good mixed ionic electronic conductor by synthesizing a nanostructure with high density of vertically aligned GBs with high concentration of strain‐induced defects. Since this type of GBs present a remarkable enhancement of their oxide‐ion mass transport properties (of up to six orders of magnitude at 773 K), it is possible to tailor the electrical nature of the whole material by nanoengineering, especially at low temperatures. The presented results lead to fundamental insights into oxygen diffusion along GBs and to the application of these engineered nanomaterials in new advanced solid state ionics devices such are micro‐solid oxide fuel cells or resistive switching memories.  相似文献   

17.
Molecularly imprinted polymer‐modified glassy carbon electrode (GCE)‐based electrochemical sensor is prepared using the electropolymerization of aniline in the presence of melamine (MA) as a template. In this work, the advantages of molecularly imprinted conducting polymers (MICPs) and electroanalytical methods were combined to obtain an electronic device with better performances. The sensor performance was evaluated by cyclic voltammetry (CV) and square wave voltammetry (SWV) with the linear range of 0.6‐16 × 10?9M, quantification limit of 14.9 × 10?10M, and detection limit of 4.47 × 10?10M (S/N = 3). The selectivity of the sensor was tested in the presence of acetoguanamine (AGA), diaminomethylatrazine (DMT), casein, histidine, and glycine interfering molecules taken at the triple concentration with MA that demonstrated too small current response compared with that of the analyte indicating high specificity of the sensor towards the template. The sensor was successfully applied to determine MA in infant formula samples with significant recovery greater than 96% and relative standard deviation (RSD) less than 4.8%. Moreover, the good repeatability, recyclability, and stability make this sensor device promising for the real‐time monitoring of MA in different food stuffs.  相似文献   

18.
Hierarchically organized porous carbonized‐Co3O4 inverse opal nanostructures (C‐Co3O4 IO) are synthesized via complementary colloid and block copolymer self‐assembly, where the triblock copolymer Pluronic P123 acts as the template and the carbon source. These highly ordered porous inverse opal nanostructures with high surface area display synergistic properties of high energy density and promising bifunctional electrocatalytic activity toward both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). It is found that the as‐made C‐Co3O4 IO/Ketjen Black (KB) composite exhibits remarkably enhanced electrochemical performance, such as increased specific capacity (increase from 3591 to 6959 mA h g?1), lower charge overpotential (by 284.4 mV), lower discharge overpotential (by 19.0 mV), and enhanced cyclability (about nine times higher than KB in charge cyclability) in Li–O2 battery. An overall agreement is found with both C‐Co3O4 IO/KB and Co3O4 IO/KB in ORR and OER half‐cell tests using a rotating disk electrode. This enhanced catalytic performance is attributed to the porous structure with highly dispersed carbon moiety intact with the host Co3O4 catalyst.  相似文献   

19.
This study proposes a conformal surface coating of conducting polymer for protecting 1D nanostructured electrode material, thereby enabling a free‐standing electrode without binder for sodium ion batteries. Here, polypyrrole (PPy), which is one of the representative conducting polymers, encapsulated cobalt phosphide (CoP) nanowires (NWs) grown on carbon paper (CP), finally realizes 1D core–shell CoP@PPy NWs/CP. The CoP core is connected to the PPy shell via strong chemical bonding, which can maintain a Co–PPy framework during charge/discharge. It also possesses bifunctional features that enhances the charge transfer and buffers the volume expansion. Consequently, 1D core–shell CoP@PPy NWs/CP demonstrates superb electrochemical performance, delivering a high areal capacity of 0.521 mA h cm?2 at 0.15 mA cm?2 after 100 cycles, and 0.443 mA h cm?2 at 1.5 mA cm?2 even after 1000 cycles. Even at a high current density of 3 mA cm?2, a significant areal discharge capacity reaching 0.285 mA h cm?2 is still maintained. The outstanding performance of the CoP@PPy NWs/CP free‐standing anode provides not only a novel insight into the modulated volume expansion of anode materials but also one of the most effective strategies for binder‐free and free‐standing electrodes with decent mechanical endurance for future secondary batteries.  相似文献   

20.
The structure evolution of oligomer fused‐ring electron acceptors (FREAs) toward high efficiency of as‐cast polymer solar cells (PSCs) is reported. First, a series of FREAs (IC‐(1‐3)IDT‐IC) based on indacenodithiophene (IDT) oligomers as cores are designed and synthesized, effects of IDT number (1–3) on their basic optical and electronic properties are investigated, and more importantly, the relationship between device performance of as‐cast PSCs and donor(D)/acceptor(A) matching (absorption, energy level, morphology, and charge transport) of IC‐(1‐3)IDT‐IC acceptors and two representative polymer donors, PTB7‐Th and PDBT‐T1 is surveyed. Then, the most promising D/A system (PDBT‐T1/IC‐1IDT‐IC) with the best D/A harmony among the six D/A combinations, which yields a power conversion efficiency (PCE) of 7.39%, is found. Finally, changing the side‐chains in IC‐1IDT‐IC from alkylphenyl to alkyl enhances the PCE from 7.39% to 9.20%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号