首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copepods of the family Splanchnotrophidae are very significant parasites of shell-less opisthobranchs, but little information exists on their occurrence, infection frequencies, and local or seasonal abundances. Using a quantitative faunistic approach, 2257 potential hosts belonging to 47 opisthobranch species were collected from 1991 to 1996 off the Chilean and Argentinian coasts, mainly by SCUBA. Endoparasitic splanchnotrophids of the genus Ismaila were found in 303 host specimens, corresponding to a 13% prevalence of infection. The opisthobranch hosts were one sacoglossan, three doridoidean and four aeolidoidean nudibranch species. In total, 12 Chilean opisthobranch species are known to be infected with splanchnotrophids. This amounts to about 20% of all shell-less opisthobranch species from Chile, and a remarkable 26% of all splanchnotrophid hosts worldwide. Infection frequencies are low in most host species, but reached 89–100% in certain populations of Thecacera darwini, Okenia luna, Flabellina sp. 1 and Elysia patagonica, representing the highest rates of infestation by splanchnotrophids ever documented. In Thecacera darwini, the prevalence was very low in northern Chile, consistently high in central Chile, and low in the south. High infestation coupled with a high number of sympatric but host-specific species indicate the coast of central Chile is a centre of Ismaila evolution. The biogeography of splanchnotrophid genera is discussed, and a hypothesis on their distributional history is presented.See also Electronic Supplement (Parts 1 and 2) at http://www.senckenberg.de/odes/02-03.htm  相似文献   

2.
Pyrgomatid barnacles are a family of balanomorphs uniquely adapted to symbiosis on corals. The evolution of the coral‐dwelling barnacles is explored using a multi‐gene phylogeny (COI, 16S, 12S, 18S, and H3) and phenotypic trait‐mapping. We found that the hydrocoral associate Wanella should be excluded, while some archaeobalanids in the genus Armatobalanus should be included in the Pyrgomatidae. Three well supported clades were recovered: clade I is the largest group and is exclusively Indo‐West Pacific, clade II contains two plesiomorphic Indo‐West Pacific genera, while clade III is comprised of East and West Atlantic taxa. Some genera did not form reciprocally monophyletic groups, while the genus Trevathana was found to be paraphyletic and to include members of three other apomorphic genera/tribes. The highly unusual coral‐parasitic hoekiines appear to be of recent origin and rapidly evolving from Trevathana sensu lato. Pyrgomatids include six‐, four‐, and one‐plated forms, and exhibit convergent evolutionary tendencies towards skeletal reduction and fusion, loss of cirral armature, and increased host specificity. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 162–179.  相似文献   

3.
4.
Oryzomyini is the richest tribe among the Sigmodontine rodents, encompassing 32 living and extinct genera and including an increasing number of recently described species and genera. Some Oryzomyini are tetralophodont showing a reduction in the number of molar folds to four, while most taxa in this tribe retain the plesiomorphic pentalophodont state. We applied phylogenetic methods, molecular dating techniques and ancestral area analyses to members of an oryzomyini clade informally named ‘D’ in former studies and included related fossil tetralophodont forms. Based on 98 morphological characters and sequences of five gene fragments, we found that the tetralophodont condition is paraphyletic. Among living taxa, Pseudoryzomys is sister to Holochilus, and Lundomys is derived from a basal divergence. A clade formed by living Holochilus and the fossils Noronhomys and Carletonomys is sister to Holochilus primigenus, making Holochilus paraphyletic. Therefore, we describe a new genus that accommodates the fossil H. primigenus. Because trans‐Andean taxa currently share a common ancestor with taxa of cis‐Adean distribution, the northern Andes uplift may have worked as a postdispersal barrier. The tetralophodont lineages diverged during the Pliocene from a cis‐Andean ancestor, and the Great Plains in South America may have favoured the diversification of tetralophodont forms adapted to open habitats during the Pliocene.  相似文献   

5.
Proctonotidae and Madrellidae are families that belong to the suborder Cladobranchia. Historically, both have been the subjects of taxonomic confusion. Thus, Proctonotidae Gray, 1853, was subsequently named as Zephyrinidae Iredale and O'Donoghue, 1923 and Janolidae Pruvot‐Fol, 1933, but currently both are considered as synonyms of Proctonotidae. On the other hand, Alder and Hancock (1864) erected the genus Madrella in Proctonotidae. Here, we completed a detailed morphological and molecular study of four apparently undescribed species of Madrellidae and Proctonotidae from the Indo‐Pacific. We performed a maximum likelihood and Bayesian inference phylogenetic analyses using two mitochondrial and one nuclear genes to improve the understanding of the families. Prompted by our results, Janolidae is removed from synonymy with Proctonotidae. Within Janolidae, there are two well‐supported clades. One includes species with smooth cerata that are found in the Atlantic and eastern Pacific Oceans. The taxa in this clade include the type species of Antiopella and several other species. We resurrect Antiopella as the valid name for this clade. The sister clade to Antiopella includes a variety of taxa with species that have been traditionally included in Janolus Bergh, 1884 and Bonisa Gosliner, 1981. Further systematic revision requires more comprehensive taxon sampling. The new species discovered have clear morphological differences and strong molecular support. They include Madrella amphora Pola and Gosliner sp. nov. , Janolus tricellariodes Pola and Gosliner sp. nov. , Janolus flavoanulatus Pola and Gosliner sp. nov., and Janolus incrustans Pola and Gosliner sp. nov.  相似文献   

6.
《Journal of bryology》2013,35(3):193-194
Abstract

The relationships within the Bryaceae, with emphasis on the genus Bryum, were studied based on morphological and anatomical characters and using cladistic methods. The analysis was performed with thirty-six species representing the different parts of the family, and with Funaria hygrometrica Hedw., Mnium hornum (Dicks.) Lindb., and Tayloria lingulata Hedw. as outgroups. The Bryaceae, and the subfamilies Bryoideae, Mielichhoferioideae, and Pohlioideae, as defined by several earlier authors appear to be paraphyletic. The genus Bryum seems to be paraphyletic, because Leptobryum pyriforme (Hedw.) Wils., Osculatia columbica De Not., and Rhodobryum giganteum (Schwaegr.) Paris, appear as ingroups within this genus when the tree is rooted with Funaria. Mnium hornum came out as the sister taxon of a clade including Pohlia cruda (Hedw.) Lindb. and P. longicollis (Hedw.) Lindb., whereas P. drummondii (Müll. Hall.) A.L. Andrews, appears not to be closely related to the other two Pohlia species studied here, making this genus paraphyletic. Mielichhoferia mielichhoferiana (Funck.) Loeske, appears as the sister taxon of Schizymenium bryoides Harv., suggesting that both these genera are paraphyletic. Overall, the stabilities of the clades are low and it is suggested that combined analyses of morphological, anatomical, and molecular data are needed to get better resolved and more stable trees.  相似文献   

7.
Analysis of a morphological dataset containing 152 parsimony‐informative characters yielded the first phylogenetic reconstruction spanning the South American characiform family Anostomidae. The reconstruction included 46 ingroup species representing all anostomid genera and subgenera. Outgroup comparisons included members of the sister group to the Anostomidae (the Chilodontidae) as well as members of the families Curimatidae, Characidae, Citharinidae, Distichodontidae, Hemiodontidae, Parodontidae and Prochilodontidae. The results supported a clade containing Anostomus, Gnathodolus, Pseudanos, Sartor and Synaptolaemus (the subfamily Anostominae sensu Winterbottom) albeit with a somewhat different set of relationships among the species within these genera. Anostomus as previously recognized was found to be paraphyletic and is split herein into two monophyletic components, a restricted Anostomus and the new genus Petulanos gen. nov. , described herein. Laemolyta appeared as sister to the clade containing Anostomus, Gnathodolus, Petulanos, Pseudanos, Sartor and Synaptolaemus. Rhytiodus and Schizodon together formed a well‐supported clade that was, in turn, sister to the clade containing Anostomus, Gnathodolus, Laemolyta, Petulanos, Pseudanos, Sartor and Synaptolaemus. Anostomoides was sister to the clade formed by these nine genera. Leporinus as currently defined was not found to be monophyletic, although certain clades within that genus were supported, including the species with subterminal mouths in the former subgenus Hypomasticus which we recognize herein as a genus. Abramites nested in Leporinus, and Leporellus was found to be the most basal anostomid genus. The presence of cis‐ and trans‐Andean species in Abramites, Leporellus, Leporinus and Schizodon, all relatively basal genera, suggests that much of the diversification of anostomid species pre‐dates the uplift of the Andean Cordilleras circa 11.8 million years ago. Several important morphological shifts in anostomid evolution are illustrated and discussed, including instances of convergence and reversal. © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 154 , 70–210.  相似文献   

8.
Scyllaeidae represents a small clade of dendronotoid nudibranchs. Notobryon wardi Odhner, 1936, has been reported to occur in tropical oceans from the Indo‐Pacific and eastern Pacific to temperate South Africa. The systematics of Notobryon has not been reviewed using modern systematic tools. Here, specimens of Notobryon were examined from the eastern Pacific, the Indo‐Pacific, and from temperate South Africa. Additionally, representatives of Scyllaea and Crosslandia were studied. Scyllaeidae was found to be monophyletic. Notobryon was also found to be monophyletic and is the sister group to Crosslandia plus Scyllaea. The molecular data also clearly indicate that within Notobryon, at least three distinct species are present, two of which are here described. Genetic distance data indicate that eastern Pacific and South African exemplars are 10–23% divergent from Indo‐Pacific exemplars of Notobryon wardi. Scyllaea pelagica has been regarded as a single, circumtropical species. Our molecular studies clearly indicate that the Atlantic and Indo‐Pacific populations are distinct and we resurrect Scyllaea fulva Quoy & Gaimard, 1824 for the Indo‐Pacific species. Our morphological studies clearly corroborate our molecular findings and differences in morphology distinguish closely related species. Different species clearly have distinct penial morphology. These studies clearly reinforce the view that eastern Pacific, Indo‐Pacific, and temperate biotas consist largely of distinct faunas, with only a minor degree of faunal overlap. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 165 , 311–336.  相似文献   

9.
10.
Nautiliniellidae Miura and Laubier, 1989 is a small family of marine polychaetes with 20 currently described species in 11 genera, most of which are known to live symbiotically in the mantle cavity of bivalves, mainly from cold seeps and hydrothermal vents, while Calamyzidae (Hartmann‐Schröder, 1971) including only one described species, Calamyzas amphictenicola Arwidsson 1932 lives as an ectoparasite on ampharetid polychaetes in Swedish waters. Nautiliniellidae and Calamyzidae have both been considered to belong to Phyllodocida, but the few phylogenetic studies including these taxa have found their positions unstable. The internal relationships within Nautiliniellidae are also poorly understood. Using molecular information from both nuclear and mitochondrial genes and morphological data we assessed the systematic placement of Nautiliniellidae (seven species; collected from Pacific hydrothermal vents and cold seeps and one from Atlantic waters) and Calamyzas amphictenicola. Our results show that C. amphictenicola and Nautiliniellidae formed a well‐supported clade that is nested within Chrysopetalidae, a free‐living group of polychaetes. The chrysopetalid genus Vigtorniella Kiseleva 1992; a bacterial mat grazer found at methane seeps, anoxic basins and whalefalls, formed a paraphyletic grade with respect to the Nautiliniellidae–Calamyzas clade. The internal relationships within the Nautiliniellidae–Calamyzas clade as well as the relationships with their hosts are also examined. As a result we synonymize Calamyzidae and Nautiliniellidae with Chrysopetalidae, with the last as the oldest available family‐group name. Within Chrysopetalidae we refer to the subfamilies Chrysopetalinae Ehlers 1864; Dysponetinae Aguado, Nygren & Rouse, herein; and Calamyzinae Hartmann‐Schröder, 1971. Calamyzinae contains C. amphictenicola, all taxa formerly in Nautiliniellidae, and the chrysopetalid genus Vigtorniella.  相似文献   

11.
The ants in the subfamily Amblyoponinae are an old, relictual group with an unusual suite of morphological and behavioural features. Adult workers pierce the integument of their larvae to imbibe haemolymph, earning them the vernacular name ‘dracula ants’. We investigate the phylogeny of this group with a data set based on 54 ingroup taxa, 23 outgroups and 11 nuclear gene fragments (7.4 kb). We find that the genus Opamyrma has been misplaced in this subfamily: it is a member of the leptanilline clade and sister to all other extant Leptanillinae. Transfer of Opamyrma to Leptanillinae renders the Amblyoponinae monophyletic. The enigmatic Afrotropical genus Apomyrma is sister to all other amblyoponines, and the latter cleave into two distinct and well‐supported clades, here termed POA and XMMAS. The POA clade, containing Prionopelta, Onychomyrmex and Amblyopone, is well resolved internally, and its structure supports synonymy of the genus Concoctio under Prionopelta ( syn.n. ). The XMMAS clade comprises two well‐supported groups: (i) a predominantly Neotropical clade, for which we resurrect the genus name Fulakora ( stat.r., stat.n. ), with junior synonyms Paraprionopelta ( syn.n. ) and Ericapelta ( syn.n. ); and (ii) the remaining taxa, or ‘core XMMAS’, which are manifested in our study as a poorly resolved bush of about a dozen lineages, suggesting rapid radiation at the time of their origin. Most of these XMMAS lineages have been assigned to the catch‐all genus Stigmatomma, but the more distinctive elements have been treated as separate genera (Xymmer, Mystrium, Myopopone and Adetomyrma). Resolution of basal relationships in the core XMMAS clade and reconfiguration of ‘Stigmatomma’ to restore monophyly of all named genera will require more extensive genetic data and additional morphological analysis. However, the genus Bannapone can be synonymized under Stigmatomma ( syn.n. ) because it is embedded within a clade that contains S. denticulatum, the type species of Stigmatomma. Divergence dating analysis indicates that crown Amblyoponinae arose in the mid‐Cretaceous, about 107 Ma (95% highest probability density: 93–121 Ma). The POA and XMMAS clades have estimated crown ages of 47 and 73 Ma, respectively. The initial burst of diversification in the core XMMAS clade occurred in the Late Paleocene/Early Eocene (50–60 Ma). Ancestral range reconstruction suggests that amblyoponines originated in the Afrotropics, and dispersed to the Indo‐Malayan region and to the New World. During none of these dispersal events did the ants break out of their cryptobiotic lifestyle.  相似文献   

12.
A phylogeny of green lacewings (Neuroptera: Chrysopidae) using anchored hybrid enrichment data is presented. Using this phylogenomic approach, we analysed 137 kb of sequence data (with < 10% missing) for 82 species in 50 genera of Chrysopidae under Bayesian and maximum likelihood criteria. We recovered a strongly supported tree topologically congruent with recently published phylogenies, especially relationships amongst higher‐level groups. The subfamily Nothochrysinae was recovered as paraphyletic, with one clade sister to the rest of Chrysopidae, and the second clade containing the nominal genus (Nothochrysa Navás) as sister to the subfamily Apochrysinae. Chrysopinae was recovered as a monophyletic with the monobasic Nothancylini tribe n. sister to the rest of the subfamily. Leucochrysini was recovered sister to Belonopterygini, and Chrysopini was rendered paraphyletic with respect to Ankylopterygini. Divergence times and diversification estimates indicate a major shift in rate in ancestral Chrysopini at the end of the Cretaceous, and the extensive radiation of Chrysopinae, the numerically dominant clade of green lacewings, began in the Mid‐Paleogene (c. 45 Ma).  相似文献   

13.
Recent phylogenetic studies of the diatoms indicate that members of the order Thalassiosirales occupy an interesting position in the diatom evolutionary tree. Despite their radial morphology and scaly auxospores, they are consistently recovered in molecular analyses as a member of subdivision Bacillariophytina and a sister clade to non‐fultoportulate and non‐radial lithodesmioids. This study included 46 species from nine traditionally accepted extant genera, and analyzed 43 nuclear small subunit (SSU) rRNA sequences in parallel with a survey of the variation in fultoportula structure. Three possible scenarios leading to the evolution of the fultoportula are discussed in the context of molecular and morphological similarities between the examined Thalassiosirales and their SSU rRNA sister clade Lithodesmiales. We speculate that the fultoportula might be derived by a modification of either a cribrum in an areola (fultoportula within an areola), or structures similar to marginal ridges now seen in lithodesmioids around a cluster of poroids (fultoportula in a tube), or finally, that the central fultoportula may have an origin different from the marginal fultoportulae. Our data confirm that fultoportula‐bearing diatoms constitute a natural phylogenetic group. The families Thalassiosiraceae, Skeletonemaceae, and Stephanodiscaceae and the genus Thalassiosira Cleve were unexpectedly found to be paraphyletic. Further, Cyclotella Kutz. and Stephanodiscus Ehr. may not be closely related and some species of these genera are more closely allied to other species of Thalassiosira. The generitype, T. nordenskioeldii, is embedded within a large poorly structured cluster of species that includes several members of Thalassiosira, Planktoniella sol, Minidiscus trioculatus, and two members of Stephanodiscus. An emendment of the order Lithodesmiales and the family Lauderiaceae are proposed.  相似文献   

14.
Recent advances in scleractinian systematics and taxonomy have been achieved through the integration of molecular and morphological data, as well as rigorous analysis using phylogenetic methods. In this study, we continue in our pursuit of a phylogenetic classification by examining the evolutionary relationships between the closely related reef coral genera Merulina, Goniastrea, Paraclavarina and Scapophyllia (Merulinidae). In particular, we address the extreme polyphyly of Favites and Goniastrea that was discovered a decade ago. We sampled 145 specimens belonging to 16 species from a wide geographic range in the Indo‐Pacific, focusing especially on type localities, including the Red Sea, western Indian Ocean and central Pacific. Tree reconstructions based on both nuclear and mitochondrial markers reveal a novel lineage composed of three species previously placed in Favites and Goniastrea. Morphological analyses indicate that this clade, Paragoniastrea Huang, Benzoni & Budd, gen. n., has a unique combination of corallite and subcorallite features observable with scanning electron microscopy and thin sections. Molecular and morphological evidence furthermore indicates that the monotypic genus Paraclavarina is nested within Merulina, and the former is therefore synonymised.  相似文献   

15.
Deep‐sea lobsters previously assigned to the family Thaumastochelidae Bate, 1888, the thaumastocheliforms, have very distinctive, greatly unequal first chelipeds, with the right side extremely elongate and pectinate, and in having short, quadrate pleonal pleura. Despite interesting morphology and a long taxonomic history, the phylogeny of the group has received little detailed analysis. Here, we conduct a species‐level phylogenetic analysis of the thaumastocheliforms based on morphological and molecular data (three mitochondrial genes: COI, 16S rDNA and 12S rDNA; two nuclear protein‐coding genes: H3 and NaK) to robustly reconstruct their evolutionary history and estimate divergence times. Separate and combined analyses of all data sources support thaumastocheliform monophyly, but as a clade deeply nested within the Nephropidae supporting recent synonymy of Thaumastochelidae with Nephropidae. Combined and molecular‐only analyses support generic monophyly of all three thaumastocheliform genera and Dinochelus as sister to Thaumastochelopsis, fully corroborating the current, morphology‐based taxonomy. In contrast, Thaumastocheles is recovered as paraphyletic in morphology‐only analyses owing to minimal character support. The Cretaceous–Paleogene Oncopareia was recovered as a stem‐lineage thaumastocheliform. The fossil record indicates that the thaumastocheliforms once lived in shallow, continental shelf depths, but moved into deeper water in the Cenozoic where they occur today. The thaumastocheliforms originated in northern Europe during the Mid‐Late Cretaceous and later dispersed westwards to the south‐eastern Pacific through the western Atlantic and eastwards to the western Pacific through the Indian Ocean. Thaumastochelopsis can be considered the most derived thaumastocheliform genus based on the degree of structural reduction relative to other thaumastocheliforms, its remote geographical occurrence (Australia) from the hypothesised place of origin (northern Europe) and its more recent estimated divergence than other genera (28 Mya for the MRCA of extant species of the genus).  相似文献   

16.
The three species in the genus Claravis (Aves: Peristerinae) are unique among members of the small New World ground‐dove clade. All three species inhabit forested areas rather than open scrubby habitat, and exhibit obvious sexual dichromatism. However, the phylogenetic relationships within Claravis remain unknown. The only molecular phylogenetic study to include more than one species of Claravis indicated the genus is paraphyletic. Here we include molecular data from all three Claravis species, including sequences from a museum skin of the previously unsampled Claravis geoffroyi (purple‐winged ground‐dove). Using both mitochondrial and nuclear loci, we estimate phylogenies and divergence times for the small New World ground‐dove clade. We also use ancestral state reconstruction methods to infer the evolution of male blue plumage (and thus sexual dimorphism) in the clade. As in the previous study we recover Claravis as a paraphyletic group, but with Claravis geoffroyi as the sister species to Claravis mondetoura (maroon‐chested ground‐dove). This result has important implications for the evolutionary history of the small New World ground‐dove clade. In particular, we recover multiple independent transitions between the monomorphic and dimorphic plumage states, which perhaps indicates sexual dimorphism arose twice in the group.  相似文献   

17.
Ingley, S.J., Bybee, S.M., Tennessen, K.J., Whiting, M.F. & Branham, M.A. (2012). Life on the fly: phylogenetics and evolution of the helicopter damselflies (Odonata, Pseudostigmatidae). —Zoologica Scripta, 41, 637–650. Helicopter damselflies (Odonata: Pseudostigmatidae) form a relatively small, yet highly specialized group of odonates, including the largest extant odonate (wingspan of ~190 mm). Pseudostigmatids are found throughout Central and South America, with the exception of one species that is found exclusively in East Africa. Pseudostigmatids oviposit exclusively in phytotelmata and forage on orb‐weaver spiders, which they pluck from webs. Pseudostigmatids also exhibit unique forms of both broad and narrow wings. Although the ecology of these behaviours and morphological features have been studied, their phylogenetic origins and evolutionary history are unknown. Here, we examine the origins of pseudostigmatid wing forms, oviposition in phytotelmata and spider feeding within a modern phylogenetic context, testing for single origins of each character. Phylogenetic analyses are based on 59 morphological characters and ~5 kb of sequence data. Our findings include a well‐supported monophyletic Pseudostigmatidae and Coryphagrion grandis as sister to the Neotropical genera. The genus Mecistogaster is paraphyletic, with Pseudostigma nested within the clade. The genus Microstigma is supported as monophyletic and forms a sister group relationship to the clade of Megaloprepus and Anomisma. The sister group relationship to Pseudostigmatidae is less clear. On the basis of this phylogenetic analysis, we propose three new tribes (Coryphagrionini, Microstigmatini and Mecistogastrini). As Pseudostigmatidae is monophyletic, the behaviour of gleaning spiders from webs appears to derive from a single origin. There are two origins of broad wings within Pseudostigmatidae. Oviposition in phytotelmata most certainly evolved multiple times within Coenagrionoidea. These findings provide new insights into pseudostigmatid evolution that can be used to generate hypotheses regarding behaviour and morphological adaptation in this unique and threatened group of damselflies.  相似文献   

18.
The fungus‐growing ants and their fungal cultivars constitute a classic example of a mutualism that has led to complex coevolutionary dynamics spanning c. 55–65 Ma. Of the five agricultural systems practised by fungus‐growing ants, higher‐attine agriculture, of which leaf‐cutter agriculture is a derived subset, remains poorly understood despite its relevance to ecosystem function and human agriculture across the Neotropics and parts of North America. Among the ants practising higher‐attine agriculture, the genus Trachymyrmex Forel, as currently defined, shares most‐recent common ancestors with both the leaf‐cutter ants and the higher‐attine genera Sericomyrmex Mayr and Xerolitor Sosa‐Calvo et al. Although previous molecular‐phylogenetic studies have suggested that Trachymyrmex is a paraphyletic grade, until now insufficient taxon sampling has prevented a full investigation of the evolutionary history of this group and limited the possibility of resolving its taxonomy. Here we describe the results of phylogenetic analyses of 38 Trachymyrmex species, including 27 of the 49 described species and at least 11 new species, using four nuclear markers, as well as phylogenetic analyses of the fungi cultivated by 23 species of Trachymyrmex using two markers. We generated new genetic data for 112 ants (402 new gene sequences) and 95 fungi (153 new gene sequences). Our results corroborate previous findings that Trachymyrmex, as currently defined, is paraphyletic. We propose recognizing two new genera, Mycetomoellerius gen.n. and Paratrachymyrmex gen.n. , and restricting the continued use of Trachymyrmex to the clade of nine largely North American species that contains the type species [Trachymyrmex septentrionalis (McCook)] and that is the sister group of the leaf‐cutting ants. Our fungal cultivar phylogeny generally corroborates previously observed broad patterns of ant–fungus association, but it also reveals further violations of those patterns. Higher‐attine fungi are divided into two groups: (i) the single species Leucoagaricus gongylophorus (Möller); and (ii) its sister clade, consisting of multiple species, recently referred to as Leucoagaricus Singer ‘clade B’. Our phylogeny indicates that, although most non‐leaf‐cutting higher‐attine ants typically cultivate species in clade B, some species cultivate L. gongylophorus, whereas still others cultivate fungi typically associated with lower‐attine agriculture. This indicates that the attine agricultural systems, which are currently defined by associations between ants and fungi, are not entirely congruent with ant and fungal phylogenies. They may, however, be correlated with as yet poorly understood biological traits of the ants and/or of their microbiomes.  相似文献   

19.
The aim of this paper was to further explore the phylogeny of Siphini by analysing molecular data (two mitochondrial genes and two nuclear markers), together with morphological (29) and ecological (two) characters, for comprehensive analyses concerning the evolution of Siphini, relationships within the tribe, and between Siphini and other Chaitophorinae. Nine Siphini species, which represent all the genera of this tribe, as well as 12 out‐group species (mainly Chaitophorini representatives of the genera Chaitophorus and Periphyllus), were used in the analyses. Molecular phylogenetic trees were reconstructed by the Bayesian inference (BI) phylogenetic analysis and maximum parsimony (MP) criterion. The cladistic analysis was performed using nona . The monophyly of Siphini was confirmed. Species belonging to subgenera Sipha and Rungsia were clustered together, and this clade was a sister with reference to a clade including the genera Atheroides and Chaetosiphella. Monophyly of Atheroides was confirmed by the molecular data; however, in cladistic analysis Atheroides seemed to be paraphyletic because Atheroides hirtellus was placed as sister to Atheroides serrulatus and Chaetosiphella. The monotypic genera Caricosipha and Laingia formed separate lineages, and Laingia was sister to all other Siphini. Chaitophorini was not retrieved by the molecular and combined data: Periphyllus was sister to a clade containing Chaitophorus and Siphini.  相似文献   

20.
Aim Our aims were: (1) to reconstruct a molecular phylogeny of the cephalaspidean opisthobranch genus Bulla, an inhabitant of shallow sedimentary environments; (2) to test if divergence times are consistent with Miocene and later vicariance among the four tropical marine biogeographical provinces; (3) to examine the phylogenetic status of possible Tethyan relict species; and (4) to infer the timing and causes of speciation events. Location Tropical and warm‐temperate regions of the Atlantic, Indo‐West Pacific, Australasia and eastern Pacific. Methods Ten of the 12 nominal species of Bulla were sampled, in a total sample of 65 individuals, together with cephalaspidean outgroups. Phylogenetic relationships were inferred by Bayesian analysis of partial sequences of the mitochondrial cytochrome c oxidase I (COI) and 16S rRNA and nuclear 28S rRNA genes. Divergence times and rates of evolution were estimated using uncorrelated relaxed‐clock Bayesian methods with fossil calibrations (based on literature review and examination of fossil specimens), implemented in beast . The geographical pattern of speciation was assessed by estimating the degree of overlap between sister lineages. Results Four clades were supported: Indo‐West Pacific (four species), Australasia (one species), Atlantic plus eastern Pacific (three species) and Atlantic (two species), with estimated mean ages of 35–46 Ma. Nominal species were monophyletic, but deep divergences were found within one Indo‐West Pacific and one West Atlantic species. Species‐level divergences occurred in the Miocene or earlier. The age of a sister relationship across the Isthmus of Panama was estimated at 7.9–32.1 Ma, and the divergence of a pair of sister species on either side of the Atlantic Ocean occurred 20.4–27.2 Ma. Main conclusions Fossils suggest that Bulla originated in the Tethys realm during the Middle Eocene. Average ages of the four main clades fall in the Eocene, and far pre‐date the 18–19 Ma closure of the Tethys Seaway. This discrepancy could indicate earlier vicariant events, selective extinction or errors of calibration. Similarly, the transisthmian divergence estimate far pre‐dates the uplift of the Panamanian Isthmus at about 3 Ma. Speciation events occurred in the Miocene, consistent with tectonic events in the central Indo‐West Pacific, isolation of the Arabian Sea by upwelling and westward trans‐Atlantic dispersal. Differences in habitat between sister species suggest that ecological speciation may also have played a role. The basal position of the Australasian species supports its interpretation as a Tethyan relict.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号