首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ongoing genomics projects of tomato (Solanum lycopersicum) and potato (S. tuberosum) are providing unique tools for comparative mapping studies in Solanaceae. At the chromosomal level, bacterial artificial chromosomes (BACs) can be positioned on pachytene complements by fluorescence in situ hybridization (FISH) on homeologous chromosomes of related species. Here we present results of such a cross-species multicolor cytogenetic mapping of tomato BACs on potato chromosomes 6 and vice versa. The experiments were performed under low hybridization stringency, while blocking with Cot-100 was essential in suppressing excessive hybridization of repeat signals in both within-species FISH and cross-species FISH of tomato BACs. In the short arm we detected a large paracentric inversion that covers the whole euchromatin part with breakpoints close to the telomeric heterochromatin and at the border of the short arm pericentromere. The long arm BACs revealed no deviation in the colinearity between tomato and potato. Further comparison between tomato cultivars Cherry VFNT and Heinz 1706 revealed colinearity of the tested tomato BACs, whereas one of the six potato clones (RH98-856-18) showed minor putative rearrangements within the inversion. Our results present cross-species multicolor BAC–FISH as a unique tool for comparative genetic studies across Solanum species.  相似文献   

2.
Miscanthus × giganteus (Mxg) is an important bioenergy feedstock crop, however, genetic diversity among legacy cultivars may be severely constrained. Only one introduction from Japan to Denmark of this sterile, triploid, vegetatively propagated crop was recorded in the 1930s. We sought to determine if the Mxg cultivars in North America were all synonyms, and if they were derived from the European introduction. We used 64 nuclear and five chloroplast simple sequence repeat (SSR) markers to estimate genetic similarity for 27 Mxg accessions from North America, and compared them with six accessions from Europe, including the species’ type‐specimen. A subset of accessions was also evaluated by restriction‐site associated DNA sequencing (RAD‐seq). In addition, we assessed the potential of new crosses to increase Mxg genetic diversity by comparing eight new triploid Mxg progeny grown from seed, along with samples of the parental species M. sacchariflorus and M. sinensis. Estimates of genotyping error rates were essential for distinguishing between experimental error and true genotypic differences among accessions. Given differences in estimated error rates and costs per marker for SSRs and RAD‐seq, the former is currently more cost‐effective for determining if two accessions are genetically identical. We concluded that all of the Mxg legacy cultivars were derived via vegetative propagation from a single genet. In contrast with the Mxg legacy cultivars, genetic similarity to the type‐specimen of eight new triploid Mxg progeny ranged from 0.46 to 0.56. Though genetic diversity among the Mxg legacy cultivars is critically low, new crosses can provide much‐needed variation to growers.  相似文献   

3.
Reliable and easy to use techniques for chromosome identification are critical for many aspects of cytogenetic research. Unfortunately, such techniques are not available in many plant species, especially those with a large number of small chromosomes. Here we demonstrate that fluorescence in situ hybridization (FISH) signals derived from bacterial artificial chromosomes (BACs) can be used as chromosome-specific cytogenetic DNA markers for chromosome identification in potato. We screened a potato BAC library using genetically mapped restriction fragment length polymorphism markers as probes. The identified BAC clones were then labeled as probes for FISH analysis. A set of 12 chromosome-specific BAC clones were isolated and the FISH signals derived from these BAC clones serve as convenient and reliable cytological markers for potato chromosome identification. We mapped the 5S rRNA genes, the 45S rRNA genes, and a potato late blight resistance gene to three specific potato chromosomes using the chromosome-specific BAC clones. Received: 19 January 2000 / Accepted: 27 March 2000  相似文献   

4.
Traditional approaches for sequencing insertion ends of bacterial artificial chromosome (BAC) libraries are laborious and expensive, which are currently some of the bottlenecks limiting a better understanding of the genomic features of auto‐ or allopolyploid species. Here, we developed a highly efficient and low‐cost BAC end analysis protocol, named BAC‐anchor, to identify paired‐end reads containing large internal gaps. Our approach mainly focused on the identification of high‐throughput sequencing reads carrying restriction enzyme cutting sites and searching for large internal gaps based on the mapping locations of both ends of the reads. We sequenced and analysed eight libraries containing over 3 200 000 BAC end clones derived from the BAC library of the tetraploid potato cultivar C88 digested with two restriction enzymes, Cla I and Mlu I. About 25% of the BAC end reads carrying cutting sites generated a 60–100 kb internal gap in the potato DM reference genome, which was consistent with the mapping results of Sanger sequencing of the BAC end clones and indicated large differences between autotetraploid and haploid genotypes in potato. A total of 5341 Cla I‐ and 165 Mlu I‐derived unique reads were distributed on different chromosomes of the DM reference genome and could be used to establish a physical map of target regions and assemble the C88 genome. The reads that matched different chromosomes are especially significant for the further assembly of complex polyploid genomes. Our study provides an example of analysing high‐coverage BAC end libraries with low sequencing cost and is a resource for further genome sequencing studies.  相似文献   

5.
MingCheng Luo  Kavitha Madishetty  Jan T. Svensson  Matthew J. Moscou  Steve Wanamaker  Tao Jiang  Andris Kleinhofs  Gary J. Muehlbauer  Roger P. Wise  Nils Stein  Yaqin Ma  Edmundo Rodriguez  Dave Kudrna  Prasanna R. Bhat  Shiaoman Chao  Pascal Condamine  Shane Heinen  Josh Resnik  Rod Wing  Heather N. Witt  Matthew Alpert  Marco Beccuti  Serdar Bozdag  Francesca Cordero  Hamid Mirebrahim  Rachid Ounit  Yonghui Wu  Frank You  Jie Zheng  Hana Simková  Jaroslav Dolezel  Jane Grimwood  Jeremy Schmutz  Denisa Duma  Lothar Altschmied  Tom Blake  Phil Bregitzer  Laurel Cooper  Muharrem Dilbirligi  Anders Falk  Leila Feiz  Andreas Graner  Perry Gustafson  Patrick M. Hayes  Peggy Lemaux  Jafar Mammadov  Timothy J. Close 《The Plant journal : for cell and molecular biology》2015,84(1):216-227
Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole‐genome shotgun sequences with a physical and genetic framework. However, because only 6278 bacterial artificial chromosome (BACs) in the physical map were sequenced, fine structure was limited. To gain access to the gene‐containing portion of the barley genome at high resolution, we identified and sequenced 15 622 BACs representing the minimal tiling path of 72 052 physical‐mapped gene‐bearing BACs. This generated ~1.7 Gb of genomic sequence containing an estimated 2/3 of all Morex barley genes. Exploration of these sequenced BACs revealed that although distal ends of chromosomes contain most of the gene‐enriched BACs and are characterized by high recombination rates, there are also gene‐dense regions with suppressed recombination. We made use of published map‐anchored sequence data from Aegilops tauschii to develop a synteny viewer between barley and the ancestor of the wheat D‐genome. Except for some notable inversions, there is a high level of collinearity between the two species. The software HarvEST:Barley provides facile access to BAC sequences and their annotations, along with the barley–Ae. tauschii synteny viewer. These BAC sequences constitute a resource to improve the efficiency of marker development, map‐based cloning, and comparative genomics in barley and related crops. Additional knowledge about regions of the barley genome that are gene‐dense but low recombination is particularly relevant.  相似文献   

6.
Genomic rearrangements arising during polyploidization are an important source of genetic and phenotypic variation in the recent allopolyploid crop Brassica napus. Exchanges among homoeologous chromosomes, due to interhomoeologue pairing, and deletions without compensating homoeologous duplications are observed in both natural B. napus and synthetic B. napus. Rearrangements of large or small chromosome segments induce gene copy number variation (CNV) and can potentially cause phenotypic changes. Unfortunately, complex genome restructuring is difficult to deal with in linkage mapping studies. Here, we demonstrate how high‐density genetic mapping with codominant, physically anchored SNP markers can detect segmental homoeologous exchanges (HE) as well as deletions and accurately link these to QTL. We validated rearrangements detected in genetic mapping data by whole‐genome resequencing of parental lines along with cytogenetic analysis using fluorescence in situ hybridization with bacterial artificial chromosome probes (BAC‐FISH) coupled with PCR using primers specific to the rearranged region. Using a well‐known QTL region influencing seed quality traits as an example, we confirmed that HE underlies the trait variation in a DH population involving a synthetic B. napus trait donor, and succeeded in narrowing the QTL to a small defined interval that enables delineation of key candidate genes.  相似文献   

7.
We developed a reference karyotype for B. vulgaris which is applicable to all beet cultivars and provides a consistent numbering of chromosomes and genetic linkage groups. Linkage groups of sugar beet were assigned to physical chromosome arms by FISH (fluorescent in situ hybridization) using a set of 18 genetically anchored BAC (bacterial artificial chromosome) markers. Genetic maps of sugar beet were correlated to chromosome arms, and North–South orientation of linkage groups was established. The FISH karyotype provides a technical platform for genome studies and can be applied for numbering and identification of chromosomes in related wild beet species. The discrimination of all nine chromosomes by BAC probes enabled the study of chromosome‐specific distribution of the major repetitive components of sugar beet genome comprising pericentromeric, intercalary and subtelomeric satellites and 18S‐5.8S‐25S and 5S rRNA gene arrays. We developed a multicolor FISH procedure allowing the identification of all nine sugar beet chromosome pairs in a single hybridization using a pool of satellite DNA probes. Fiber‐FISH was applied to analyse five chromosome arms in which the furthermost genetic marker of the linkage group was mapped adjacently to terminal repetitive sequences on pachytene chromosomes. Only on two arms telomere arrays and the markers are physically linked, hence these linkage groups can be considered as terminally closed making the further identification of distal informative markers difficult. The results support genetic mapping by marker localization, the anchoring of contigs and scaffolds for the annotation of the sugar beet genome sequence and the analysis of the chromosomal distribution patterns of major families of repetitive DNA.  相似文献   

8.
Jacobs G  Dechyeva D  Wenke T  Weber B  Schmidt T 《Genetica》2009,135(2):157-167
We constructed a sugar beet (Beta vulgaris) bacterial artificial chromosome (BAC) library of the monosomic addition line PAT2. This chromosomal mutant carries a single additional chromosome fragment (minichromosome) derived from the wild beet Beta patellaris. Restriction analysis of the mutant line by pulsed-field gel electrophoresis was used to determine HindIII as a suitable enzyme for partial digestion of genomic DNA to generate large-insert fragments which were cloned into the vector pCC1. The library consists of 36,096 clones with an average insert size of 120 kb, and 2.2% of the clones contain mitochondrial or chloroplast DNA. Based on a haploid genome size of 758 Mbp, the library represents 5.7 genome equivalents providing the probability of 99.67% that any sequence of the PAT2 genome can be found in the library. Hybridization to high-density filters was used to isolate 89 BACs containing arrays of the centromere-associated satellite repeats pTS5 and pTS4.1. Using the identified BAC clones in fluorescent in situ hybridization experiments with PAT2 and Beta patellaris chromosome spreads their wild beet origin and centromeric localization was demonstrated. Multi-colour FISH with differently labelled satellite repeats pTS5 and pTS4.1 was used to investigate the large-scale organization of the centromere of the PAT2 minichromosome in detail. FISH studies showed that the centromeric satellite pTS5 is flanked on both sides by pTS4.1 arrays and the arms of the minichromosome are terminated by the Arabidopsis-type telomeric sequences. FISH with a BAC, selected from high-density filters after hybridization with an RFLP marker of the genetic linkage group I, demonstrated that it is feasible to correlate genetic linkage groups with chromosomes. Therefore, the PAT2 BAC library provides a useful tool for the characterization of Beta centromeres and a valuable resource for sugar beet genome analysis.  相似文献   

9.
10.
F Dong  J M McGrath  J P Helgeson  J Jiang 《Génome》2001,44(4):729-734
Genomic in situ hybridization (GISH) is one of the most popular and effective techniques for detecting alien chromatin introgressed into breeding lines; however, GISH analysis alone does not reveal the genetic identity of the alien chromosomes. We previously isolated a set of bacterial artificial chromosomes (BACs) specific to each of the 12 potato chromosomes. These BAC clones can be used as chromosome-specific cytogenetic DNA markers (CSCDMs) for potato chromosome identification. Here we demonstrate that GISH and fluorescence in situ hybridization (FISH), using CSCDMs, can be performed sequentially on the same chromosome preparations. Somatic metaphase chromosomes prepared using an enzymatic digestion and "flame-drying" procedure allows repeated probing up to five times without significant damage to chromosome morphology. The sequential GISH and FISH analyses reveal the genomic origin and genetic identity of the alien chromosomes in a single experiment and also determine whether an alien chromosome has been added to the genetic background of potato or is substituting for a homoeologous potato chromosome. The sequential GISH and FISH procedures should be widely applicable for germplasm characterization, especially in plant species with small-sized chromosomes.  相似文献   

11.
The loci of the 5S and 45S rRNA genes were localized on chromosomes in five species of Capsicum, namely, an-nuum, chacoense, frutescens, baccatum, and chinense by FISH. The 5S rDNA was localized to the distal region of one chromosome in all species observed. The number of 45S rDNA loci varied among species; one in annuum, two in chacoense, frutescens, and chinense, and four in baccatum, with the exceptions that ‘CM334’ of annuum had three loci and ‘tabasco’ of frutescens had one locus. ‘CM334’-derived BAC clones, 384B09 and 365P05, were screened with 5S rDNA as a probe, and BACs 278M03 and 262A23 were screened with 25S rDNA as a probe. Both ends of these BAC clones were sequenced. FISH with these BAC probes on pachytenes from ‘CM334’ plant showed one 5S rDNA locus and three 45S rDNA loci, consistent with the patterns on the somatic chromosomes. The 5S rDNA probe was also applied on extended DNA fibers to reveal that its coverage measured as long as 0.439 Mb in the pepper genome. FISH techniques applied on somatic and meiotic chromosomes and fibers have been established for chili to provide valuable information about the copy number variation of 45S rDNA and the actual physical size of the 5S rDNA in chili.  相似文献   

12.
13.
Hop (Humulus lupulus L.) cultivars are vegetatively propagated and it is difficult to differentiate them during the process of propagation. Fingerprinting with molecular markers based on DNA could be a useful means of identifying different cultivars. Simple sequence repeats, or microsatellite markers, are the most suitable marker for genetic fingerprinting because they are multi‐allelic and co‐dominant. For this purpose, we have developed primers for 10 new polymorphic microsatellite loci that are suitable for genetic fingerprinting in hop.  相似文献   

14.
Zhang P  Li W  Fellers J  Friebe B  Gill BS 《Chromosoma》2004,112(6):288-299
Fluorescence in situ hybridization (FISH) has been widely used in the physical mapping of genes and chromosome landmarks in plants and animals. Bacterial artificial chromosomes (BACs) contain large inserts making them amenable for FISH mapping. We used BAC-FISH to study genome organization and evolution in hexaploid wheat and its relatives. We selected 56 restriction fragment length polymorphism (RFLP) locus-specific BAC clones from libraries of Aegilops tauschii (the D-genome donor of hexaploid wheat) and A-genome diploid Triticum monococcum. Different types of repetitive sequences were identified using BAC-FISH. Two BAC clones gave FISH patterns similar to the repetitive DNA family pSc119; one BAC clone gave a FISH pattern similar to the repetitive DNA family pAs1. In addition, we identified several novel classes of repetitive sequences: one BAC clone hybridized to the centromeric regions of wheat and other cereal species, except rice; one BAC clone hybridized to all subtelomeric chromosome regions in wheat, rye, barley and oat; one BAC clone contained a localized tandem repeat and hybridized to five D-genome chromosome pairs in wheat; and four BAC clones hybridized only to a proximal region in the long arm of chromosome 4A of hexaploid wheat. These repeats are valuable markers for defined chromosome regions and can also be used for chromosome identification. Sequencing results revealed that all these repeats are transposable elements (TEs), indicating the important role of TEs, especially retrotransposons, in genome evolution of wheat.Communicated by P.B. Moens  相似文献   

15.
Iovene M  Wielgus SM  Simon PW  Buell CR  Jiang J 《Genetics》2008,180(3):1307-1317
Potato (Solanum tuberosum) has the densest genetic linkage map and one of the earliest established cytogenetic maps among all plant species. However, there has been limited effort to integrate these maps. Here, we report fluorescence in situ hybridization (FISH) mapping of 30 genetic marker-anchored bacterial artificial chromosome (BAC) clones on the pachytene chromosome 6 of potato. The FISH mapping results allowed us to define the genetic positions of the centromere and the pericentromeric heterochromatin and to relate chromatin structure to the distribution of recombination along the chromosome. A drastic reduction of recombination was associated with the pericentromeric heterochromatin that accounts for ~28% of the physical length of the pachytene chromosome. The pachytene chromosomes 6 of potato and tomato (S. lycopersicum) share a similar morphology. However, distinct differences of heterochromatin distribution were observed between the two chromosomes. FISH mapping of several potato BACs on tomato pachytene chromosome 6 revealed an overall colinearity between the two chromosomes. A chromosome inversion was observed in the euchromatic region of the short arms. These results show that the potato and tomato genomes contain more chromosomal rearrangements than those reported previously on the basis of comparative genetic linkage mapping.  相似文献   

16.
Fluorescence in situ hybridization (FISH) is commonly used to identify chromosomal aberrations such as translocations, deletions, duplications, gene fusions, and aneuploidies. It relies on the hybridization of fluorescently labeled DNA probes onto denatured metaphase chromosomes or interphase nuclei. These probes are often generated from DNA sequences cloned within bacterial artificial chromosomes (BACs). Growing these BACs in adequate amounts for FISH can be demanding. We describe FISH performed with bacteriophage Phi29 DNA polymerase amplified BAC DNA. Generating this material required significantly smaller cultures and less time than standard methods. The FISH results obtained were comparable with those obtained from standard BAC DNA. We believe this method of BAC DNA generation is useful for the entire FISH community as it improves considerably on prior methods.  相似文献   

17.

Background  

Tomato (Solanum lycopersicon) and potato (S. tuberosum) are two economically important crop species, the genomes of which are currently being sequenced. This study presents a first genome-wide analysis of these two species, based on two large collections of BAC end sequences representing approximately 19% of the tomato genome and 10% of the potato genome.  相似文献   

18.
Gene silencing in potato: allelic differences and effect of ploidy   总被引:4,自引:0,他引:4  
Silencing of genes is mostly studied in diploid, homozygous, self-fertile and sexually propagated species. However, conclusions drawn for these species are not always applicable to crops like potato, which is an autotetraploid, highly heterozygous, vegetatively propagated species. Factors influencing the level of silencing in potato are discussed, with emphasis on inhibition of the granule-bound starch synthase I (GBSSI) gene. Type of construct, number of integrated T-DNA copies, structural arrangement of the T-DNA locus, integration site, target tissue and genetic background are important factors for all plant species. Ploidy level and multiple allelism are factors deserving special attention when the efficiency of silencing of endogenous genes is studied in polyploid, heterozygous species such as potato.  相似文献   

19.
Methods based on single nucleotide polymorphism (SNP), copy number variation (CNV) and presence/absence variation (PAV) discovery provide a valuable resource to study gene structure and evolution. However, as a result of these structural variations, a single reference genome is unable to cover the entire gene content of a species. Therefore, pangenomics analysis is needed to ensure that the genomic diversity within a species is fully represented. Brassica napus is one of the most important oilseed crops in the world and exhibits variability in its resistance genes across different cultivars. Here, we characterized resistance gene distribution across 50 B. napus lines. We identified a total of 1749 resistance gene analogs (RGAs), of which 996 are core and 753 are variable, 368 of which are not present in the reference genome (cv. Darmor‐bzh). In addition, a total of 15 318 SNPs were predicted within 1030 of the RGAs. The results showed that core R‐genes harbour more SNPs than variable genes. More nucleotide binding site‐leucine‐rich repeat (NBS‐LRR) genes were located in clusters than as singletons, with variable genes more likely to be found in clusters. We identified 106 RGA candidates linked to blackleg resistance quantitative trait locus (QTL). This study provides a better understanding of resistance genes to target for genomics‐based improvement and improved disease resistance.  相似文献   

20.
The potato cyst nematodes Globodera pallida and G. rostochiensis are economically important plant pathogens causing losses to UK potato harvests estimated at £50 m/ year. Implications of climate change on their future pest status have not been fully considered. Here, we report growth of female G. pallida and G. rostochiensis over the range 15 to 25°C. Females per plant and their fecundity declined progressively with temperatures above 17.5°C for G. pallida, whilst females per plant were optimal between 17.5 and 22.5°C for G. rostochiensis. Relative reproductive success with temperature was confirmed on two potato cultivars infected with either species at 15, 22.5 and 25°C. The reduced reproductive success of G. pallida at 22.5°C relative to 15°C was also recorded for a further seven host cultivars studied. The differences in optimal temperatures for reproductive success may relate to known differences in the altitude of their regions of origin in the Andes. Exposure of G. pallida to a diurnal temperature stress for one week during female growth significantly suppressed subsequent growth for one week at 17.5°C but had no effect on G. rostochiensis. However, after two weeks of recovery, female size was not significantly different from that for the control treatment. Future soil temperatures were simulated for medium‐ and high‐emission scenarios and combined with nematode growth data to project future implications of climate change for the two species. Increased soil temperatures associated with climate change may reduce the pest status of G. pallida but benefit G. rostochiensis especially in the southern United Kingdom. We conclude that plant breeders may be able to exploit the thermal limits of G. pallida by developing potato cultivars able to grow under future warm summer conditions. Existing widely deployed resistance to G. rostochiensis is an important characteristic to retain for new potato cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号