首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although plants contain substantial amounts of arabinogalactan proteins (AGPs), the enzymes responsible for AGP glycosylation are largely unknown. Bioinformatics indicated that AGP galactosyltransferases (GALTs) are members of the carbohydrate-active enzyme glycosyltransferase (GT) 31 family (CAZy GT31) involved in N- and O-glycosylation. Six Arabidopsis GT31 members were expressed in Pichia pastoris and tested for enzyme activity. The At4g21060 gene (named AtGALT2) was found to encode activity for adding galactose (Gal) to hydroxyproline (Hyp) in AGP protein backbones. AtGALT2 specifically catalyzed incorporation of [14C]Gal from UDP-[14C]Gal to Hyp of model substrate acceptors having AGP peptide sequences, consisting of non-contiguous Hyp residues, such as (Ala-Hyp) repetitive units exemplified by chemically synthesized (AO)7 and anhydrous hydrogen fluoride-deglycosylated d(AO)51. Microsomal preparations from Pichia cells expressing AtGALT2 incorporated [14C]Gal to (AO)7, and the resulting product co-eluted with (AO)7 by reverse-phase HPLC. Acid hydrolysis of the [14C]Gal-(AO)7 product released 14C-radiolabel as Gal only. Base hydrolysis of the [14C]Gal-(AO)7 product released a 14C-radiolabeled fragment that co-eluted with a Hyp-Gal standard after high performance anion-exchange chromatography fractionation. AtGALT2 is specific for AGPs because substrates lacking AGP peptide sequences did not act as acceptors. Moreover, AtGALT2 uses only UDP-Gal as the substrate donor and requires Mg2+ or Mn2+ for high activity. Additional support that AtGALT2 encodes an AGP GALT was provided by two allelic AtGALT2 knock-out mutants, which demonstrated lower GALT activities and reductions in β-Yariv-precipitated AGPs compared with wild type plants. Confocal microscopic analysis of fluorescently tagged AtGALT2 in tobacco epidermal cells indicated that AtGALT2 is probably localized in the endomembrane system consistent with its function.  相似文献   

2.
Hu Y  Qin Y  Zhao J 《Protoplasma》2006,229(1):21-31
Summary. Arabinogalactan proteins (AGPs) are a class of highly glycosylated proteins widely distributed in higher plants and thought to be involved in plant growth and development. In the present paper, Western blotting with the monoclonal antibodies JIM4, JIM13, and LM2 showed that JIM13 reacted best with total protein extracts from flowers and siliques of Arabidopsis thaliana. This monoclonal antibody was therefore used as a probe to localize the AGP epitope in zygotic embryos at different developmental stages. Immunofluorescent labeling with JIM13 showed that AGPs were mainly distributed in the embryo proper and the top 1 to 2 cells and basal part of suspensors. The results of immunogold labeling confirmed the JIM13 epitope distribution in the different cells of the suspensor. AGP immunofluorescence was also observed at the shoot apex meristem during transition from the globular to the heart embryo stage, but this gradually disappeared after the torpedo stage. After (β-D-Glc)3 Yariv phenylglycoside (βGlcY), a synthetic reagent that specifically binds to AGPs, was added to A. thaliana ovule culture medium, the survival rate and frequency of development of ovules at the zygote stage decreased in a concentration-dependent manner, with complete inhibition at 100 μM. The frequency of embryo differentiation from the globular stage to heart or later stages also decreased sharply. When βGlcY was removed 24 h after inoculation, the inhibitory effects were reversible in a concentration-dependent and time-dependent manner. The results show that βGlcY can inhibit embryo development and differentiation in A. thaliana, and the inhibitory effects are concentration dependent and reversible, indicating that AGPs are involved in embryo differentiation and shoot meristem formation. The possible roles of AGPs in A. thaliana zygotic embryo development are also discussed. Correspondence and reprints: Key Laboratory of the Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, People’s Republic of China.  相似文献   

3.
BACKGROUND: Arabinogalactan proteins (AGPs) are complex proteoglycans of the cell wall found in the entire plant kingdom and in almost all plant organs. AGPs encompass a large group of heavily glycosylated cell-wall proteins which share common features, including the presence of glycan chains especially enriched in arabinose and galactose and a protein backbone particularly rich in hydroxyproline residues. However, AGPs also exhibit strong heterogeneities among their members in various plant species. AGP ubiquity in plants suggests these proteoglycans are fundamental players for plant survival and development. SCOPE: In this review, we first present an overview of current knowledge and specific features of AGPs. A section devoted to major tools used to study AGPs is also presented. We then discuss the distribution of AGPs as well as various aspects of their functional properties in root tissues and pollen tubes. This review also suggests novel directions of research on the role of AGPs in the biology of roots and pollen tubes.  相似文献   

4.
Arabinogalactan proteins (AGPs), present in cell walls, plasma membranes and extracellular secretions, are massively glycosylated hydroxyproline-rich proteins that play a key role in several plant developmental processes. After stress treatment, microspores cultured in vitro can reprogramme and change their gametophytic developmental pathways towards embryogenesis, thereby producing embryos which can further give rise to haploid and double haploid plants, important biotechnological tools in plant breeding. Microspore embryogenesis constitutes a convenient system for studying the mechanisms underlying cell reprogramming and embryo formation. In this work, the dynamics of both AGP presence and distribution were studied during pollen development and microspore embryogenesis in Brassica napus, by employing a multidisciplinary approach using monoclonal antibodies for AGPs (LM2, LM6, JIM13, JIM14, MAC207) and analysing the expression pattern of the BnAGP Sta 39–4 gene. Results showed the developmental regulation and defined localization of the studied AGP epitopes during the two microspore developmental pathways, revealing different distribution patterns for AGPs with different antigenic reactivity. AGPs recognized by JIM13, JIM14 and MAC207 antibodies were related to pollen maturation, whereas AGPs labelled by LM2 and LM6 were associated with embryo development. Interestingly, the AGPs labelled by JIM13 and JIM14 were induced with the change of microspore fate. Increases in the expression of the Sta 39–4 gene, JIM13 and JIM14 epitopes found specifically in 2–4 cell stage embryo cell walls, suggested that AGPs are early molecular markers of microspore embryogenesis. Later, LM2 and LM6 antigens increased progressively with embryo development and localized on cell walls and cytoplasmic spots, suggesting an active production and secretion of AGPs during in vitro embryo formation. These results give new insights into the involvement of AGPs as potential regulating/signalling molecules in microspore reprogramming and embryogenesis.  相似文献   

5.
Arabinogalactan proteins (AGPs) are plant‐specific extracellular glycoproteins implicated in a variety of processes during growth and development. AGP biosynthesis involves O‐galactosylation of hydroxyproline (Hyp) residues followed by a stepwise elongation of the complex sugar chains. However, functionally dominant Hyp O‐galactosyltransferases, such that their disruption produces phenocopies of AGP‐deficient mutants, remain to be identified. Here, we purified and identified three potent Hyp O‐galactosyltransferases, HPGT1, HPGT2 and HPGT3, from Arabidopsis microsomal fractions. Loss‐of‐function analysis indicated that approximately 90% of the endogenous Hyp O‐galactosylation activity is attributable to these three enzymes. AGP14 expressed in the triple mutant migrated much faster on SDS‐PAGE than when expressed in wild‐type, confirming a considerable decrease in levels of glycosylation of AGPs in the mutant. Loss‐of‐function mutant plants exhibited a pleiotropic phenotype of longer lateral roots, longer root hairs, radial expansion of the cells in the root tip, small leaves, shorter inflorescence stems, reduced fertility and shorter siliques. Our findings provide genetic evidence that Hyp‐linked arabinogalactan polysaccharide chains are critical for AGP function and clues to how arabinogalactan moieties of AGPs contribute to cell‐to‐cell communication during plant growth and development.  相似文献   

6.
7.
Arabinogalactan proteins (AGPs) have been implicated in a variety of plant development processes including sexual plant reproduction. As a crucial developmental event, plant sexual reproduction generally occurs inside an ovule embedded in an ovary. The inaccessibility of the egg cells, zygotes, and embryos has hindered our understanding of the importance of AGPs in the early events involving fertilization, zygotic division, and early embryogenesis. In this study, the well-established in vitro zygote and ovary culture systems, together with immunofluorescence and immunogold labelling techniques, were employed to investigate the role of AGPs in the early events of sexual reproduction in Nicotiana tabacum. Dramatic changes in AGP content during ovule development were evidenced by western blotting. Subcellular localization revealed that AGPs are localized in the plasma membrane, cell wall, and cytoplasm of pre- and post-fertilized egg cells, and cytoplasm and vacuoles of two-celled proembryos. Abundant AGPs were detected in unfertilized egg cells; however, the level of AGPs substantially decreased in fertilized egg cells. Polar distribution of AGPs in elongated zygotes was observed. The early two-celled proembryos just from zygote division displayed accumulation of AGPs at a low level, while in the elongated two-celled proembryos at the late stage, the AGP content clearly increased. Provision of betaGlcY, a synthetic phenylglycoside that specifically binds AGPs, to the in vitro cultures of isolated zygote and fertilized ovaries increased abnormal symmetrical division of zygotes. In the culture of pollinated but unfertilized ovaries, addition of betaGlcY resulted in arrest of fertilization of the egg cells, but had no effect on fertilization of the central cells. The possible roles of AGPs in fertilization, zygotic division, and proembryo development are discussed.  相似文献   

8.
9.
Gilson P  Gaspar YM  Oxley D  Youl JJ  Bacic A 《Protoplasma》2001,215(1-4):128-139
Arabinogalactan proteins (AGPs) are proteoglycans secreted by plant cells that have been implicated in plant growth and development. Most AGPs cloned to date possess highly labile glycosylphosphatidylinositol (GPI) lipid anchors. These anchors transiently attach AGPs to the plasma membrane before they are released into the cell wall following GPI anchor hydrolysis. We have isolated and partially sequenced the protein core of an AGP purified from styles of Nicotiana alata. The protein sequence data were utilised to clone the AGP's gene, NaAGP4. This AGP shares about 78% sequence identity with the tomato AGP LeAGP-1. RNA gel blot analyses of different plant organs indicate that NaAGP4 is expressed in the same tissues and at similar levels as LeAGP-1. Furthermore, NaAGP4 like LeAGP-1 is rapidly suppressed by tissue wounding and by pathogen infection. We believe NaAGP4 and LeAGP-1 are the first described examples of orthologous AGPs from different plant species. In contrast, another AGP from N. alata, NaAGP1, is comparatively unaffected by wounding and pathogen infection, although this AGP is expressed in similar tissues and at similar levels as NaAGP4.  相似文献   

10.
Arabinogalactan proteins (AGPs) have been implicated in plant development including sexual plant reproduction. In this paper, the expression of AGPs and the effects of β-glucosyl Yariv reagent (βGlcY, which binds arabinogalactan proteins) in embryo development and cotyledon formation were investigated. Immunofluorescence assay displayed that the expression of AGPs labeled with antibody JIM13 was developmentally regulated. In early stages, AGPs were evenly distributed in the whole embryo, except for a short polar expression in the basal suspensor cell. In the globular stage of embryo, AGPs were condensed in the embryo proper (EP), apex of the EP, and at the juncture of the EP and suspensor. In heart-shaped embryo, APGs were only present at the juncture of the EP and suspensor. Immunogold labeling assay showed that the strong expression of AGPs at the juncture of the EP and suspensor was localized in the cell wall. Provision of βGlcY to the in vitro ovule culture medium caused delayed growth of embryos, cotyledon defect and abnormal venation pattern. Consequently, βGlcY induced the death of defective seedlings with the characteristics of deformed or irregular single cotyledon. Our results suggested that AGPs play functional roles in embryo development, cotyledon formation and seedling morphology establishment in Nicotiana tabacum L.  相似文献   

11.
We report that fluorescently tagged arabinogalactan glycosyltransferases target not only the Golgi apparatus but also uncharacterized smaller compartments when transiently expressed in Nicotiana benthamiana. Approximately 80% of AtGALT31A [Arabidopsis thaliana galactosyltransferase from family 31 (At1g32930)] was found in the small compartments, of which, 45 and 40% of AtGALT29A [Arabidopsis thaliana galactosyltransferase from family 29 (At1g08280)] and AtGlcAT14A [Arabidopsis thaliana glucuronosyltransferase from family 14 (At5g39990)] colocalized with AtGALT31A, respectively; in contrast, N‐glycosylation enzymes rarely colocalized (3–18%), implicating a role of the small compartments in a part of arabinogalactan (O‐glycan) biosynthesis rather than N‐glycan processing. The dual localization of AtGALT31A was also observed for fluorescently tagged AtGALT31A stably expressed in an Arabidopsis atgalt31a mutant background. Further, site‐directed mutagenesis of a phosphorylation site of AtGALT29A (Y144) increased the frequency of the protein being targeted to the AtGALT31A‐localized small compartments, suggesting a role of Y144 in subcellular targeting. The AtGALT31A localized to the small compartments were colocalized with neither SYP61 (syntaxin of plants 61), a marker for trans‐Golgi network (TGN), nor FM4‐64‐stained endosomes. However, 41% colocalized with EXO70E2 (Arabidopsis thaliana exocyst protein Exo70 homolog 2), a marker for exocyst‐positive organelles, and least affected by Brefeldin A and Wortmannin. Taken together, AtGALT31A localized to small compartments that are distinct from the Golgi apparatus, the SYP61‐localized TGN, FM4‐64‐stained endosomes and Wortmannin‐vacuolated prevacuolar compartments, but may be part of an unconventional protein secretory pathway represented by EXO70E2 in plants.   相似文献   

12.
Chapman A  Blervacq AS  Vasseur J  Hilbert JL 《Planta》2000,211(3):305-314
 Direct somatic embryogenesis was induced in root tissues of the Cichorium hybrid `474' (C. intybus L. var. sativum×C. endivia L. var. latifolia). Addition of β-d-glucosyl Yariv reagent (βGlcY), a synthetic phenylglycoside that specifically binds arabinogalactan-proteins (AGPs), to the culture medium blocked somatic embryogenesis in a concentration-dependent manner with complete inhibition of induction occurring at 250 μM βGlcY. The AGP-unreactive α-d-galactosyl Yariv reagent had no biological activity in this system. Upon transfer of 250 μM βGlcY-treated roots to control conditions, somatic embryogenesis was recovered with a time course similar to that of control roots. The βGlcY penetrated roots and bound abundantly to developing somatic embryos, to the root epidermis and the stele. Immunofluorescence and immunogold labelling using monoclonal antibodies (JIM13, JIM16 and LM2) revealed that AGPs were localised in the outer cell walls peripheral cells of the globular embryo. A spatio-temporal expression of AGPs appeared to be associated with differentiation events in the somatic embryo during the transition from the globular stage to the torpedo stage. To verify βGlcY specificity, molecules that bound βGlcY were extracted from treated conditioned medium and identified as AGPs by using the same monoclonal antibodies. In addition, AGPs were found to be abundantly present in the medium during embryogenic culture. All of these results establish the implication of AGPs in embryo development, and their putative role in somatic embryogenesis is discussed. Received: 26 August 1999 / Accepted: 28 January 2000  相似文献   

13.
Arabinogalactan proteins (AGPs) secreted by zucchini squash (Cucurbita pepo L.) cell cultures into the medium are implicated in cell proliferation. Conditioned medium derived from cell suspensions of squash cultivar Dundoo could enhance multiplication rate of slow-growing cell line Cx3005. To examine the role of AGPs, a precipitation assay was performed using Yariv reagent which binds selectively to AGPs. This AGP precipitation as well as proteinase application arrested cell division. However, chitinase treatment successfully increased embryogenic callus mass. A growth promotion was also obtained by arabinogalactan addition to the culture medium. Immunoblotting analysis using the MAC 207 anti-AGP monoclonal antibody showed high AGP expression in Dundoo cell cultures.  相似文献   

14.
Arabinogalactan proteins (AGPs) are a class of highly glycosylated, widely distributed proteins in higher plants. In the previous study, we found that the green fluorescence from JIM13-labeled AGPs was mainly distributed in embryo proper and the basal part of suspensor but gradually disappeared after the torpedo-stage embryos in Arabidopsis. And (β-d-Glc)3 Yariv phenylglycoside (βGlcY), a synthetic reagent that specifically binds to AGPs, could inhibit embryo development. In this study, as a continuous work, we investigated the AGP functions in embryo germination, cotyledon formation, and cell wall deposition in Arabidopsis embryos by using immunofluorescent, immunoenzyme, transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR) techniques. The results showed that 50 μM βGlcY caused inhibition of embryo germination, formation of abnormal cotyledon embryos, and disorder of cotyledon vasculature. Compared with the normal embryos in vitro and in vivo, the AGPs and pectin signals were quite weaker in the whole abnormal embryos, whereas the cellulose signal was stronger in the shoot apical meristem (SAM) of abnormal embryo by calcofluor white staining. The FTIR assay demonstrated that the cell wall of abnormal embryos was relatively poorer in pectins and richer in cellulose than those of normal embryos. By TEM observation, the SAM cells of the abnormal embryos had less cytoplasm, more plastid and starch grains, and larger vacuole than that of normal embryos. These results indicated that AGPs may play roles in embryo germination, cotyledon formation, cell wall cellulose and pectin deposition, and cell division potentiality during embryo development of Arabidopsis.  相似文献   

15.
Arabinogalactan proteins (AGPs) are very large proteoglycans thought to have more of a signaling than a structural role when secreted into the plant cell wall. AGPs are also the first known family of abundant plant proteins synthesized with glycosylphosphatidylinositol(GPI) anchors. Nascent cellular Arabidopsis AGPs, still bearing an intact GPI anchor, and AGPs copiously discharged into the culture medium after phospholipase-cleavage of their anchor were each represented by more than 15 seemingly homologous molecular species of increasing size. In washed cells 3H-ethanolamine was slowly incorporated into each AGP’s GPI anchor via phosphatidylethanolamine. Pulse labeling of AGPs by 3H-acetate and by 3H-galactose was much more rapid, allowing labeled AGP detection in the growth medium within 1 h. HPLC analysis of the radiolabel distribution in AGPs secreted within 1–8 h revealed a sharp preference for the larger molecular species. After several hours a population of smaller radioactive AGP species began to appear in the medium. Following certain manipulations of the cells newly secreted AGP species measured by HPLC on a relative mass basis formed a pattern surprisingly different from the radioactivity pattern, although larger species still dominated. Thus Arabidopsis cells appear capable of releasing higher mass AGP species apparently stored in cell wall sites along with a unique mixture of freshly synthesized AGPs in combinations potentially active in signaling.  相似文献   

16.
The transmitting-tissue cells of the style of flowering plants secrete a complex extracellular matrix through which pollen tubes grow to the ovary to effect fertilisation. This matrix is particularly rich in a class of proteoglycans, the arabinogalactan-proteins (AGPs). AGPs from the ovary of Nicotiana alata were found to be developmentally regulated, as the different charge classes of AGPs altered during floral development. The AGPs from the mature ovary had charge characteristics that were distinct from those previously reported for the stigma and style. However, the concentration of AGP (0.6 g/ml fresh weight) in the ovary did not change during development, or in response to either compatible or incompatible pollination. The AGPs of the ovary are mainly associated with the epidermis of the placenta.  相似文献   

17.
Arabinogalactanproteins (AGPs) are proteoglycans of the extracellular matrix o f most plants. Since the late 1980s, AGPs have attracted widespread attention from plant biologists following reports of their involvement in plant development. In particular, the use of monoclonal antibodies to carbohydrate epitopes of AGPs has demonstrated stage- and tissue-specificity and has led to suggestions that they are involved in tissue morphogenesis. The recent cloning of the genes for several AGP protein backbones allows us to consider new strategies to address their function. Here, we summarize our knowledge of AGPs and consider parallels with animal proteoglycans as a possible framework for future work.  相似文献   

18.
Fu H  Yadav MP  Nothnagel EA 《Planta》2007,226(6):1511-1524
A biochemical investigation of arabinogalactan proteins (AGPs) in Physcomitrella patens was undertaken with particular emphasis on the glycan chains. Following homogenization and differential centrifugation of moss gametophytes, AGPs were obtained by Yariv phenylglycoside-induced precipitation from the soluble, microsomal membrane, and cell wall fractions. Crossed-electrophoresis indicated that each of these three AGP fractions was a mixture of several AGPs. The soluble AGP fraction was selected for further separation by anion-exchange and gel-permeation chromatography. The latter indicated molecular masses of ∼100 and 224 kDa for the two major soluble AGP subfractions. The AGPs in both of these subfractions contained the abundant (1,3,6)-linked galactopyranosyl residues, terminal arabinofuranosyl residues, and (1,4)-linked glucuronopyranosyl residues that are typical of many angiosperm AGPs. Unexpectedly, however, the moss AGP glycan chains contained about 15 mol% terminal 3-O-methyl-l-rhamnosyl residues, which have not been found in angiosperm AGPs. This unusual and relatively nonpolar sugar, also called l-acofriose, is likely to have considerable effects on the overall polarity of Physcomitrella AGPs. A review of the literature indicates that the capacity to synthesize polymers containing 3-O-methyl-l-rhamnosyl residues is present in a variety of bacteria, algae and lower land plants but became less common through evolution to the extent that this sugar has been found in only a few species of angiosperms where it occurs as a single residue on steroidal glycosides.  相似文献   

19.
Some of the most important changes that occur in plants during sexual reproduction involve the transition from a sporophytic to a gametophytic type of development. In this paper, these changes were evaluated for Arabidopsis thaliana. The results obtained clearly show differences in the pattern of distribution of specific arabinogalactan protein (AGP) sugar epitopes, during anther and ovule development. AGPs are hydroxyproline-rich glycoproteins that are massively glycosylated and ubiquitous in plants. The molecular mechanism of action of AGPs is still unknown, mainly due to the difficulties posed by the complex saccharide chains. However, the complex structure of the sugar fraction of AGPs makes them a potential source of signalling molecules. The selective labelling obtained with AGP mAbs JIM8, JIM13, MAC207, and LM2, during Arabidopsis pollen and pistil development, suggests that some AGPs can work as markers for gametophytic cell differentiation. Specific labelling of the first gametophytic cells in the pistil, the strong labelling of the secretory cells of the embryo sac, the synergid cells, and the labelling of the integument micropylar cells, apparently outlining the pollen tube pathway into its final target, the embryo sac, have all been shown. In the anthers, the specific labelling of gametophytic cells, and of the male gametes that travel along the pollen tube, may indicate AGP epitopes acting as signals for the pollen tube to reach its final destiny. The specific labelling of cells destined to go into programmed cell death is also discussed.  相似文献   

20.
The arabinogalactan protein (AGP) fractions of embryogenic and non-embryogenic callus lines of Euphorbia pulcherrima Willd. ex. Klotzsch were analysed over a cultivation period of 9 weeks using the β -glucosyl Yariv reagent and an anti-AGP antibody (LM2). The amount of AGPs detected with the Yariv reagent increased in embryogenic cultures during the development of somatic embryos. The embryogenic and non-embryogenic callus contained different sets of AGPs characterized with the Yariv reagent and the LM2 monoclonal antibody. AGPs recognized by LM2 are localized primarily in the protodermal cells of globular somatic embryos. The development of somatic embryos of E. pulcherrima appears to be associated with the presence of particular AGPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号