首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arabidopsis thaliana acyl‐CoA‐binding protein 2 (ACBP2) is a stress‐responsive protein that is also important in embryogenesis. Here, we assign a role for ACBP2 in abscisic acid (ABA) signalling during seed germination, seedling development and the drought response. ACBP2 was induced by ABA and drought, and transgenic Arabidopsis overexpressing ACBP2 (ACBP2‐OXs) showed increased sensitivity to ABA treatment during germination and seedling development. ACBP2‐OXs also displayed improved drought tolerance and ABA‐mediated reactive oxygen species (ROS) production in guard cells, thereby promoting stomatal closure, reducing water loss and enhancing drought tolerance. In contrast, acbp2 mutant plants showed decreased sensitivity to ABA in root development and were more sensitive to drought stress. RNA analyses revealed that ACBP2 overexpression up‐regulated the expression of Respiratory Burst Oxidase Homolog D (AtrbohD) and AtrbohF, two NAD(P)H oxidases essential for ABA‐mediated ROS production, whereas the expression of Hypersensitive to ABA1 (HAB1), an important negative regulator in ABA signalling, was down‐regulated. In addition, transgenic plants expressing ACBP2pro:GUS showed beta‐glucuronidase (GUS) staining in guard cells, confirming a role for ACBP2 at the stomata. These observations support a positive role for ACBP2 in promoting ABA signalling in germination, seedling development and the drought response.  相似文献   

2.
Ubiquitination is a critical post‐translational protein modification that has been implicated in diverse cellular processes, including abiotic stress responses, in plants. In the present study, we identified and characterized a T‐DNA insertion mutant in the At5g10650 locus. Compared to wild‐type Arabidopsis plants, at5g10650 progeny were hyposensitive to ABA at the germination stage. At5g10650 possessed a single C‐terminal C3HC4‐type Really Interesting New Gene (RING) motif, which was essential for ABA‐mediated germination and E3 ligase activity in vitro. At5g10650 was closely associated with microtubules and microtubule‐associated proteins in Arabidopsis and tobacco leaf cells. Localization of At5g10650 to the nucleus was frequently observed. Unexpectedly, At5g10650 was identified as JAV1‐ASSOCIATED UBIQUITIN LIGASE1 (JUL1), which was recently reported to participate in the jasmonate signaling pathway. The jul1 knockout plants exhibited impaired ABA‐promoted stomatal closure. In addition, stomatal closure could not be induced by hydrogen peroxide and calcium in jul1 plants. jul1 guard cells accumulated wild‐type levels of H2O2 after ABA treatment. These findings indicated that JUL1 acts downstream of H2O2 and calcium in the ABA‐mediated stomatal closure pathway. Typical radial arrays of microtubules were maintained in jul1 guard cells after exposure to ABA, H2O2, and calcium, which in turn resulted in ABA‐hyposensitive stomatal movements. Finally, jul1 plants were markedly more susceptible to drought stress than wild‐type plants. Overall, our results suggest that the Arabidopsis RING E3 ligase JUL1 plays a critical role in ABA‐mediated microtubule disorganization, stomatal closure, and tolerance to drought stress.  相似文献   

3.
Squalene epoxidase enzymes catalyse the conversion of squalene into 2,3‐oxidosqualene, the precursor of cyclic triterpenoids. Here we report that the Arabidopsis drought hypersensitive/squalene epoxidase 1‐5 (dry2/sqe1‐5) mutant, identified by its extreme hypersensitivity to drought stress, has altered stomatal responses and root defects because of a point mutation in the SQUALENE EPOXIDASE 1 (SQE1) gene. GC‐MS analysis indicated that the dry2/sqe1‐5 mutant has altered sterol composition in roots but wild‐type sterol composition in shoots, indicating an essential role for SQE1 in root sterol biosynthesis. Importantly, the stomatal and root defects of the dry2/sqe1‐5 mutant are associated with altered production of reactive oxygen species. As RHD2 NADPH oxidase is de‐localized in dry2/sqe1‐5 root hairs, we propose that sterols play an essential role in the localization of NADPH oxidases required for regulation of reactive oxygen species, stomatal responses and drought tolerance.  相似文献   

4.
Drought, a primary abiotic stress, seriously affects plant growth and productivity. Stomata play a vital role in regulating gas exchange and drought adaptation. However, limited knowledge exists of the molecular mechanisms underlying stomatal movement in trees. Here, PeCHYR1, a ubiquitin E3 ligase, was isolated from Populus euphratica, a model of stress adaptation in forest trees. PeCHYR1 was preferentially expressed in young leaves and was significantly induced by ABA (abscisic acid) and dehydration treatments. To study the potential biological functions of PeCHYR1, transgenic poplar 84K (Populus alba × Populus glandulosa) plants overexpressing PeCHYR1 were generated. PeCHYR1 overexpression significantly enhanced H2O2 production and reduced stomatal aperture. Transgenic lines exhibited increased sensitivity to exogenous ABA and greater drought tolerance than that of WT (wild‐type) controls. Moreover, up‐regulation of PeCHYR1 promoted stomatal closure and decreased transpiration, resulting in strongly elevated WUE (water use efficiency). When exposed to drought stress, transgenic poplar maintained higher photosynthetic activity and biomass accumulation. Taken together, these results suggest that PeCHYR1 plays a crucial role in enhancing drought tolerance via ABA‐induced stomatal closure caused by hydrogen peroxide (H2O2) production in transgenic poplar plants.  相似文献   

5.
Salicylic acid (SA) induces stomatal closure sharing several components with abscisic acid (ABA) and methyl jasmonate (MeJA) signaling. We have previously shown that two guard cell-preferential mitogen-activated protein kinases (MAPKs), MPK9 and MPK12, positively regulate ABA signaling and MeJA signaling in Arabidopsis thaliana. In this study, we examined whether these two MAPKs are involved in SA-induced stomatal closure using genetic mutants and a pharmacological, MAPKK inhibitor. Salicylic acid induced stomatal closure in mpk9 and mpk12 single mutants but not in mpk9 mpk12 double mutants. The MAPKK inhibitor PD98059 inhibited SA-induced stomatal closure in wild-type plants. Salicylic acid induced extracellular reactive oxygen species (ROS) production, intracellular ROS accumulation, and cytosolic alkalization in the mpk9, mpk12, and mpk9 mpk12 mutants. Moreover, SA-activated S-type anion channels in guard cells of wild-type plants but not in guard cells of mpk9 mpk12 double mutants. These results imply that MPK9 and MPK12 are positive regulators of SA signaling in Arabidopsis guard cells.  相似文献   

6.
7.
Reactive oxygen species (ROS) production and scavenging in plants under drought stress have been studied intensively in recent years. Here we report a global analysis of gene expression for the major ROS generating and scavenging proteins in alfalfa root and shoot under gradual drought stress followed by one-day recovery. Data from two alfalfa varieties, one drought tolerant and one drought sensitive, were compared and no qualitative differences in ROS gene regulation between the two were found. Conserved, tissue-specific patterns of gene expression in response to drought were observed for several ROS-scavenging gene families, including ascorbate peroxidase, monodehydroascorbate reductase, and peroxiredoxin. In addition, differential gene expression within families was observed. Genes for the ROS-generating enzyme, NADPH oxidase were generally induced under drought, while those for glycolate oxidase were repressed. Among the ROS-scavenging protein genes, Ferritin, Cu/Zn superoxide dismutase (SOD), and the majority of the glutathione peroxidase family members were induced under drought in both roots and shoots of both alfalfa varieties. In contrast, Fe-SOD, CC-type glutaredoxins, and thoiredoxins were downregulated.  相似文献   

8.
9.
Systemic acquired resistance (SAR) is induced by pathogens and confers protection against a broad range of pathogens. Several SAR signals have been characterized, but the nature of the other unknown signalling by small metabolites in SAR remains unclear. Glutathione (GSH) has long been implicated in the defence reaction against biotic stress. However, the mechanism that GSH increases plant tolerance against virus infection is not entirely known. Here, a combination of a chemical, virus-induced gene-silencing-based genetics approach, and transgenic technology was undertaken to investigate the role of GSH in plant viral resistance in Nicotiana benthamiana. Tobacco mosaic virus (TMV) infection results in increasing the expression of GSH biosynthesis genes NbECS and NbGS, and GSH content. Silencing of NbECS or NbGS accelerated oxidative damage, increased accumulation of reactive oxygen species (ROS), compromised plant resistance to TMV, and suppressed the salicylic acid (SA)-mediated signalling pathway. Application of GSH or l -2-oxothiazolidine-4-carboxylic acid (a GSH activator) alleviated oxidative damage, decreased accumulation of ROS, elevated plant local and systemic resistance, enhanced the SA-mediated signalling pathway, and increased the expression of ROS scavenging-related genes. However, treatment with buthionine sulfoximine (a GSH inhibitor) accelerated oxidative damage, elevated ROS accumulation, compromised plant systemic resistance, suppressed the SA-mediated signalling pathway, and reduced the expression of ROS-regulating genes. Overexpression of NbECS reduced oxidative damage, decreased accumulation of ROS, increased resistance to TMV, activated the SA-mediated signalling pathway, and increased the expression of the ROS scavenging-related genes. We present molecular evidence suggesting GSH is essential for both local and systemic resistance of Nbenthamiana to TMV through a differential modulation of SA and ROS.  相似文献   

10.
Water deficiency is a critical environmental condition that is seriously reducing global plant production. Improved water‐use efficiency (WUE) and drought tolerance are effective strategies to address this problem. In this study, PdEPF1, a member of the EPIDERMAL PATTERNING FACTOR (EPF) family, was isolated from the fast‐growing poplar clone NE‐19 [Populus nigra × (Populus deltoides × Populus nigra)]. Significantly, higher PdEPF1 levels were detected after induction by dehydration and abscisic acid. To explore the biological functions of PdEPF1, transgenic triploid white poplars (Populus tomentosa ‘YiXianCiZhu B385’) overexpressing PdEPF1 were constructed. PdEPF1 overexpression resulted in increased water deficit tolerance and greater WUE. We confirmed that the transgenic lines with greater instantaneous WUE had approximately 30% lower transpiration but equivalent CO2 assimilation. Lower transpiration was associated with a 28% reduction in abaxial stomatal density. PdEPF1 overexpression not only strongly enhanced WUE, but also greatly improved drought tolerance, as measured by the leaf relative water content and water potential, under limited water conditions. In addition, the growth of these oxPdEPF1 plants was less adversely affected by reduced water availability than plants with a higher stomatal density, indicating that plants with a low stomatal density may be well suited to grow in water‐scarce environments. Taken together, our data suggest that PdEPF1 improves WUE and confers drought tolerance in poplar; thus, it could be used to breed drought‐tolerant plants with increased production under conditions of water deficiency.  相似文献   

11.
Recent evidence suggests a link between cathepsin L (CTSL) and vascular diseases. However, its contribution to reactive oxygen species (ROS) homeostasis in the vasculature remains unknown. p66shc is a redox enzyme implicated in mitochondrial ROS generation and translation of oxidative signals. In this study, we explored the relationship between CTSL and oxidative damage in vasculature and whether the oxidative damage is mediated by p66shc.Carotid arteries from aged mice (24 months old) showed a reduction in CTSL expression compared with young wild-type mice (4 months old). Local knockdown of CTSL in carotid arteries of young mice by adenoviral vector encoding the short hairpin RNA targeting CTSL leading to premature vascular aging, as shown by mitochondrial disruption, increased β-galactosidase–positive cells, reduced telomerase activity, and up-regulation of p66shc. Knockdown of CTSL decreased the expression of mitochondrial oxidative phosphorylation (OXPHOS) complexes I, III, and IV, leading to increased mitochondrial ROS and hyperpolarization of the mitochondrial membrane in vitro. Furthermore, knockdown of CTSL also stimulated ROS production and senescence in vascular cells, accompanied by the up-regulation of p66shc.However, p66shc knockdown blunted the alteration in ROS production, and senescence in CTSL knockdown vascular cells. This study suggests that CTSL knockdown partially induces vascular cells damage via increased ROS production and up-regulation of p66shc.  相似文献   

12.
Drought is a major threat to wheat growth and crop productivity. However, there has been only limited success in developing drought-hardy cultivars. This lack of progress is due, at least in part, to a lack of understanding of the molecular mechanisms of drought tolerance in wheat. Here, we evaluated the potential role of three cytosolic glyceraldehyde-3-phosphate dehydrogenases (TaGAPC2/5/6) under drought stress in wheat and Arabidopsis. We found that TaGAPC2/5/6 all positively responded to drought stress via reactive oxygen species (ROS) scavenging and stomatal movement. The results of yeast co-transformation and electrophoretic mobility shift assay showed that TaWRKY33 acted as a direct regulator of TaGAPC2/5/6 genes. The dual luciferase reporter assay indicated that TaWRKY33 positively activated the expression of TaGAPC2/5/6. The results of bimolecular fluorescence complementation and yeast two-hybrid system demonstrated that TaGAPC2/5/6 interacted with phospholipase Dδ (PLDδ). We then demonstrated that TaGAPC2/5/6 positively promoted the activity of TaPLDδ in vitro and in vivo. Furthermore, lower PLDδ activity in RNAi wheat could lead to less PA accumulation, causing higher stomatal aperture sizes under drought stress. In summary, our results establish a new positive regulatory mechanism of TaGAPCs which helps wheat fine-tune their drought responses.  相似文献   

13.
Water deficit is a major environmental threat affecting crop yields worldwide. In this study, a drought stress‐sensitive mutant drought sensitive 8 (ds8) was identified in rice (Oryza sativa L.). The DS8 gene was cloned using a map‐based approach. Further analysis revealed that DS8 encoded a Nck‐associated protein 1 (NAP1)‐like protein, a component of the SCAR/WAVE complex, which played a vital role in actin filament nucleation activity. The mutant exhibited changes in leaf cuticle development. Functional analysis revealed that the mutation of DS8 increased stomatal density and impaired stomatal closure activity. The distorted actin filaments in the mutant led to a defect in abscisic acid (ABA)‐mediated stomatal closure and increased ABA accumulation. All these resulted in excessive water loss in ds8 leaves. Notably, antisense transgenic lines also exhibited increased drought sensitivity, along with impaired stomatal closure and elevated ABA levels. These findings suggest that DS8 affects drought sensitivity by influencing actin filament activity.  相似文献   

14.
Eumelanin photoprotects pigmented tissues from ultraviolet (UV) damage. However, UVA‐induced tanning seems to result from the photooxidation of preexisting melanin and does not contribute to photoprotection. We investigated the mechanism of UVA‐induced degradation of 5,6‐dihydroxyindole‐2‐carboxylic acid (DHICA)‐melanin taking advantage of its solubility in a neutral buffer and using a differential spectrophotometric method to detect subtle changes in its structure. Our methodology is suitable for examining the effects of various agents that interact with reactive oxygen species (ROS) to determine how ROS is involved in the UVA‐induced oxidative modifications. The results show that UVA radiation induces the oxidation of DHICA to indole‐5,6‐quinone‐2‐carboxylic acid in eumelanin, which is then cleaved to form a photodegraded, pyrrolic moiety and finally to form free pyrrole‐2,3,5‐tricarboxylic acid. The possible involvement of superoxide radical and singlet oxygen in the oxidation was suggested. The generation and quenching of singlet oxygen by DHICA‐melanin was confirmed by direct measurements of singlet oxygen phosphorescence.  相似文献   

15.
16.
Regulation of stomata movements is crucial for plants ability to cope with their changing environment. Guard cell’s (GC) water potential directs water flux inside/outside this cell, which eventually is causing the stoma to open or close, respectively. Some of the osmolytes which accumulates in the GC cytoplasm and are known to play a role in stomata opening are sugars, arising from chloroplast starch degradation. During stomata closure, the accumulated osmolytes are removed from the GC cytoplasm. Surprisingly little is known about prevention of starch degradation and forming additional sugars which may interfere with osmotic changes that are necessary for correct closure of stomata.   One of the early events leading to stomata closure is production of reactive oxygen species (ROS) in various sub-cellular sites and organelles of the stoma. Here we report that ROS production during abscisic acid (ABA) and methyl jasmonate (MJ) stimuli in Arabidopsis GC chloroplasts were more than tripled. Moreover, ROS were detected on the sub-organelle level in compartments that are typically occupied by starch grains. This observation leads us to suspect that ROS function in that particular location is necessary for stomata closure. We therefore hypothesize that these ROS are involved in redox control that lead to the inactivation of starch degradation that takes place in these compartments, thus contributing to the stoma closure in an additional way.  相似文献   

17.
The air pollutant ozone can be used as a tool to unravel in planta processes induced by reactive oxygen species (ROS). Here, we have utilized ozone to study ROS‐dependent stomatal signaling. We show that the ozone‐triggered rapid transient decrease (RTD) in stomatal conductance coincided with a burst of ROS in guard cells. RTD was present in 11 different Arabidopsis ecotypes, suggesting that it is a genetically robust response. To study which signaling components or ion channels were involved in RTD, we tested 44 mutants deficient in various aspects of stomatal function. This revealed that the SLAC1 protein, essential for guard cell plasma membrane S‐type anion channel function, and the protein kinase OST1 were required for the ROS‐induced fast stomatal closure. We showed a physical interaction between OST1 and SLAC1, and provide evidence that SLAC1 is phosphorylated by OST1. Phosphoproteomic experiments indicated that OST1 phosphorylated multiple amino acids in the N terminus of SLAC1. Using TILLING we identified three new slac1 alleles where predicted phosphosites were mutated. The lack of RTD in two of them, slac1‐7 (S120F) and slac1‐8 (S146F), suggested that these serine residues were important for the activation of SLAC1. Mass‐spectrometry analysis combined with site‐directed mutagenesis and phosphorylation assays, however, showed that only S120 was a specific phosphorylation site for OST1. The absence of the RTD in the dominant‐negative mutants abi1‐1 and abi2‐1 also suggested a regulatory role for the protein phosphatases ABI1 and ABI2 in the ROS‐induced activation of the S‐type anion channel.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号