首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 622 毫秒
1.
Polysaccharides containing -1,4-mannosyl residues (mannans) are abundant in the lignified secondary cell walls of gymnosperms, and are also found as major seed storage polysaccharides in some plants, such as legume species. Although they have been found in a variety of angiosperm tissues, little is known about their presence and tissue localisation in the model angiosperm, Arabidopsis thaliana (L.) Heynh. In this study, antibodies that specifically recognised mannans in competitive ELISA experiments were raised in rabbits. Using these antibodies, we showed that Golgi-rich vesicles derived from Arabidopsis callus were able to synthesise mannan polysaccharides in vitro. Immunofluorescence light microscopy and immunogold electron microscopy of Arabidopsis inflorescence stem sections revealed that the mannan polysaccharide epitopes were localised in the thickened secondary cell walls of xylem elements, xylem parenchyma and interfascicular fibres. Similarly, mannan epitopes were present in the xylem of the leaf vascular bundles. Surprisingly, the thickened epidermal cell walls of both leaves and stems also contained abundant mannan epitopes. Low levels were observed in most other cell types examined. Thus, mannans are widespread in Arabidopsis tissues, and may be of particular significance in both lignified and non-lignified thickened cell walls. Polysaccharide analysis using carbohydrate gel electrophoresis (PACE) of cell wall preparations digested with a specific mannanase showed that there is glucomannan in inflorescence stems. The findings show that Arabidopsis can be used as a model plant in studies of the synthesis and functions of mannans.Abbreviations BSA bovine serum albumin - ELISA enzyme-linked immunosorbent assay - PACE polysaccharide analysis by carbohydrate gel electrophoresis  相似文献   

2.
3.
PtrMAN6 is a plant mannan endo-hydrolase involved in modulating cell expansion and cell wall thickening in Populus developing xylem. N-glycosylation and dimerization affect the PtrMAN6 enzymatic activity, which is crucial for production of the endogenous galactoglucomannan oligosaccharide signal molecule in plants. There are 5 potential N-glycosylation sites and 6 cysteines in PtrMAN6 sequence. Each of the N-glycosylation or cysteine sites was site-direct mutagenized individually as well as in combination to analyze their effects on the PtrMAN6 N-glycosylation or dimerization status and the enzyme activity. Our results demonstrated that all 5 potential N-glycosylation sites are involved in the N-glycosylation, which is essential for PtrMAN6 enzyme activity. Meanwhile, we found only 3 carboxyl-terminal cysteines are involved in formation of disulfide-linked dimer to regulate PtrMAN6 activity. The 3 carboxyl-terminal cysteines were conserved in the wall-bounded mannan endo-hydrolases, and this structure may play a role in regulating the PtrMAN6 activity through interaction with redox signals such as reactive oxygen species (ROS) and hydrogen sulfide (H2S) for GGMOs signal generation.  相似文献   

4.
Cell walls in commercially important cereals and grasses are characterized by the presence of (1,3;1,4)‐β‐d ‐glucans. These polysaccharides are beneficial constituents of human diets, where they can reduce the risk of hypercholesterolemia, type II diabetes, obesity and colorectal cancer. The biosynthesis of cell wall (1,3;1,4)‐β‐d ‐glucans in the Poaceae is mediated, in part at least, by the cellulose synthase‐like CslF family of genes. Over‐expression of the barley CslF6 gene under the control of an endosperm‐specific oat globulin promoter results in increases of more than 80% in (1,3;1,4)‐β‐d ‐glucan content in grain of transgenic barley. Analyses of (1,3;1,4)‐β‐d ‐glucan fine structure indicate that individual CslF enzymes might direct the synthesis of (1,3;1,4)‐β‐d ‐glucans with different structures. When expression of the CslF6 transgene is driven by the Pro35S promoter, the transgenic lines have up to sixfold higher levels of (1,3;1,4)‐β‐d ‐glucan in leaves, but similar levels as controls in the grain. Some transgenic lines of Pro35S:CslF4 also show increased levels of (1,3;1,4)‐β‐d ‐glucans in grain, but not in leaves. Thus, the effects of CslF genes on (1,3;1,4)‐β‐d ‐glucan levels are dependent not only on the promoter used, but also on the specific member of the CslF gene family that is inserted into the transgenic barley lines. Altering (1,3;1,4)‐β‐d ‐glucan levels in grain and vegetative tissues will have potential applications in human health, where (1,3;1,4)‐β‐d ‐glucans contribute to dietary fibre, and in tailoring the composition of biomass cell walls for the production of bioethanol from cereal crop residues and grasses.  相似文献   

5.
Mixed‐linkage (1,3;1,4)‐β‐glucan (MLG) is a glucose polymer with beneficial effects on human health and high potential for the agricultural industry. MLG is present predominantly in the cell wall of grasses and is synthesized by cellulose synthase‐like F or H families of proteins, with CSLF6 being the best‐characterized MLG synthase. Although the function of this enzyme in MLG production has been established, the site of MLG synthesis in the cell is debated. It has been proposed that MLG is synthesized at the plasma membrane, as occurs for cellulose and callose; in contrast, it has also been proposed that MLG is synthesized in the Golgi apparatus, as occurs for other matrix polysaccharides of the cell wall. Testing these conflicting possibilities is fundamentally important in the general understanding of the biosynthesis of the plant cell wall. Using immuno‐localization analyses with MLG‐specific antibody in Brachypodium and in barley, we found MLG present in the Golgi, in post‐Golgi structures and in the cell wall. Accordingly, analyses of a functional fluorescent protein fusion of CSLF6 stably expressed in Brachypodium demonstrated that the enzyme is localized in the Golgi. We also established that overproduction of MLG causes developmental and growth defects in Brachypodium as also occur in barley. Our results indicated that MLG production occurs in the Golgi similarly to other cell wall matrix polysaccharides, and supports the broadly applicable model in grasses that tight mechanisms control optimal MLG accumulation in the cell wall during development and growth. This work addresses the fundamental question of where mixed linkage (1,3;1,4)‐β‐glucan (MLG) is synthesized in plant cells. By analyzing the subcellular localization of MLG and MLG synthase in an endogenous system, we demonstrated that MLG synthesis occurs at the Golgi in Brachypodium and barley. A growth inhibition due to overproduced MLG in Brachypodium supports the general applicability of the model that a tight control of the cell wall polysaccharides accumulation is needed to maintain growth homeostasis during development.  相似文献   

6.
7.
The cell wall of the green alga Micrasterias denticulata Bréb. ex Ralfs (Desmidiaceae, Zygnematophyceae, Streptophyta) was investigated to obtain information on the composition of component polysaccharides and proteoglycans to allow comparison with higher plants and to understand cell wall functions during development. Various epitopes currently assigned to arabinogalactan‐proteins (AGPs) of higher plants could be detected in Micrasterias by immuno TEM and immunofluorescence methods, but the walls did not bind the β‐d ‐glycosyl‐Yariv (β‐GlcY) reagent. Secretory vesicles and the primary wall were labeled by antibodies against AGPs (JIM8, JIM13, JIM14). Dot and Western blot experiments indicated a proteoglycan nature of the epitopes recognized, which consisted of galactose and xylose as major sugars by high performance anion exchange chromatography with pulsed amperometric detection (HPAEC‐PAD). Epitopes of alkali‐soluble polysaccharides assigned to noncellulosic polysaccharides in higher plants could be detected and located in the wall during its formation. The polyclonal anti‐xyloglucan (anti‐XG) antibody labeled primary and secondary wall of Micrasterias, whereas the monoclonal antibody CCRC‐M1, directed against the fucose/galactose side chain of xyloglucan (XyG), did not recognize any structures. Labeling by anti‐XG antibody at the trans‐sites of the dictyosomes and at wall material containing vesicles indicated that secretion of the epitopes occurred similar to higher plants. The presence of (1→3, 1→4)‐β‐glucan (mixed linked glucan) in the secondary cell wall but not in the primary cell wall of Micrasterias could be demonstrated by an antibody recognizing this glucan type, whereas (1→3)‐β‐glucan (callose) could not be detected. The analytical results revealed that alkali‐soluble polysaccharides in the secondary wall of Micrasterias consist mostly of (1→3, 1→4)‐β‐d ‐glucan.  相似文献   

8.
9.
BENAYOUN  J. 《Annals of botany》1983,52(2):189-200
Certain developmental features of cell wall hydrolysis werestudied in the secondary xylem of poplar (Populus italica Moench).At the intervascular pit membrane hydrolysis starts prematurelybefore differentiation of the secondary wall is complete andincreases progressively. Eventually the whole of the middlelamella is hydrolysed, and the primary wall undergoes lyticmodification. The modified polysaccharides are dispersed, presumablyby the transpiration stream. During differentiation the vessel-parenchymapit membrane remains unaltered and undergoes thickening. Thepresent investigation suggests that the plasalemma plays animportant role in the ordered hydrolysis of certain regionsof the primary walls. Populus italicaMoench, poplar, secondaryxylem, xylem, cell wall hydrolysis, plasmalemma, pit membram  相似文献   

10.
Endo‐β‐1,4‐d ‐mannanase from the Antarctic springtail, Cryptopygus antarcticus (CaMan), is a cold‐adapted β‐mannanase that has the lowest optimum temperature (30°C) of all known β‐mannanases. Here, we report the apo‐ and mannopentaose (M5) complex structures of CaMan. Structural comparison of CaMan with other β‐mannanases from the multicellular animals reveals that CaMan has an extended loop that alters topography of the active site. Structural and mutational analyses suggest that this extended loop is linked to the cold‐adapted enzymatic activity. From the CaMan‐M5 complex structure, we defined the mannose‐recognition subsites and observed unreported M5 binding site on the surface of CaMan. Proteins 2014; 82:3217–3223. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
Cell walls of the Basidiomycete fungus Polyporus tumulosus (Cooke) were fractionated, and the polysaccharide content of the fractions investigated. The major constituents of the cell wall include four polysaccharides, chitin, a β-1, 3-glucan and the alkali soluble α-glucan and xylomannan.The glucan is highly dextrotatory with an [α]D21 of + 221° and gave on partial acid hydrolysis and acetolysis an homologous series of oligosaccharides. The disaccharide was shown to be nigerose 3-0-α-D-glucopyranosyl-D-glucose. Periodate oxidation and methylation studies provided supporting evidence that the polysaccharide is an essentially unbranched polymer of 1,3-linked glucose residues.The other alkali-soluble polysaccharide, a xylomannan, is a polymer of mannose and xylose in the approximate molar proportions of 1.2:1. It has an [α]D = + 56° and on partial acid hydrolysis and acetolysis gave an homologous series of 1,3-linked mannodextrins but no oligosaccharides containing xylose were obtained. An α-1,3-linked mannan was prepared from the xylomannan by degradation with mild acid or by degradation of the periodate-oxidased and reduced xylomannan. The structure therefore is visualised as having a backbone of 1,3-linked mannan, to which xylose residues are attached. Methylation studies showed that branching occurs at C-4 of the mannopyranose units; the presence of 2,3-di-o-methyl-d-xylose in the hydrolysate of the methylated polysaccharide indicated that some of the xylose residues are 1,4-linked. The possible structure of the fungal cell wall is discussed in the light of the results obtained.  相似文献   

12.
Eighty‐eight fungi isolated from soil and decaying organic matter were screened for mannanolytic activity. Twenty‐eight fungi produced extracellular mannanase on locust bean gum as evidenced by zone of hydrolysis produced on mannan agar gel. Six prominent producers, including four Fusarium species namely Fusarium fusarioides NFCCI 3282, Fusarium solani NFCCI 3283, Fusarium equiseti NFCCI 3284, Fusarium moniliforme NFCCI 3287 with Cladosporium cladosporioides NFCCI 3285 and Acrophialophora levis NFCCI 3286 produced the β‐mannanase in the range of 84–140 nkat/mL. All these grew well on particulate substrates in solid‐state fermentation (SSF), producing relatively higher titers on mannan‐rich palm kernel cake (PKC) and copra meal. Two high yielding strains, F. equiseti (1747 nkat/gds) and A. levis (897 nkat/gds) were selected for statistical optimization of mannanase on PKC. Interaction of two critical solid state fermentation parameters, pH and moisture on mannanase production by these two molds was studied by response surface method. Optimized production on PKC resulted in three‐ to fourfold enhancement in enzyme yield was observed in case of F. equiseti (5945 nkat/gds) and A. levis (4726 nkat/gds). HPLC analysis of mannan hydrolysate indicated that F. equiseti and A. levis mannanase performed efficient hydrolysis of konjac gum (up to 99%) with exclusive mannooligosaccahride (DP of 4) production. A seminative SDS‐PAGE revealed that A. levis and F. solani produced three isoforms, F. moniliforme produced two isoforms while F. fusarioides, F. equiseti, and C. cladosporioides produced a single enzyme.  相似文献   

13.
Wall polysaccharide chemistry varies phylogenetically, suggesting a need for variation in wall enzymes. Although plants possess the genes for numerous putative enzymes acting on wall carbohydrates, the activities of the encoded proteins often remain conjectural. To explore phylogenetic differences in demonstrable enzyme activities, we extracted proteins from 57 rapidly growing plant organs with three extractants, and assayed their ability to act on six oligosaccharides ‘modelling’ selected cell‐wall polysaccharides. Based on reaction products, we successfully distinguished exo‐ and endo‐hydrolases and found high taxonomic variation in all hydrolases screened: β‐d ‐xylosidase, endo‐(1→4)‐β‐d ‐xylanase, β‐d ‐mannosidase, endo‐(1→4)‐β‐d ‐mannanase, α‐d ‐xylosidase, β‐d ‐galactosidase, α‐l ‐arabinosidase and α‐l ‐fucosidase. The results, as GHATAbase, a searchable compendium in Excel format, also provide a compilation for selecting rich sources of enzymes acting on wall carbohydrates. Four of the hydrolases were accompanied, sometimes exceeded, by transglycosylase activities, generating products larger than the substrate. For example, during β‐xylosidase assays on (1→4)‐β‐d ‐xylohexaose (Xyl6), Marchantia, Selaginella and Equisetum extracts gave negligible free xylose but approximately equimolar Xyl5 and Xyl7, indicating trans‐β‐xylosidase activity, also found in onion, cereals, legumes and rape. The yield of Xyl9 often exceeded that of Xyl7–8, indicating that β‐xylanase was accompanied by an endotransglycosylase activity, here called trans‐β‐xylanase, catalysing the reaction 2Xyl6→ Xyl3 + Xyl9. Similar evidence also revealed trans‐α‐xylosidase, trans‐α‐arabinosidase and trans‐α‐arabinanase activities acting on xyloglucan oligosaccharides and (1→5)‐α‐l ‐arabino‐oligosaccharides. In conclusion, diverse plants differ dramatically in extractable enzymes acting on wall carbohydrate, reflecting differences in wall polysaccharide composition. Besides glycosidase and glycanase activities, five new transglycosylase activities were detected. We propose that such activities function in the assembly and re‐structuring of the wall matrix.  相似文献   

14.
15.
16.
The distribution of noncellulosic polysaccharides in cell walls of tracheids and xylem parenchyma cells in normal and compression wood of Pinus radiata, was examined to determine the relationships with lignification and cellulose microfibril orientation. Using fluorescence microscopy combined with immunocytochemistry, monoclonal antibodies were used to detect xyloglucan (LM15), β(1,4)-galactan (LM5), heteroxylan (LM10 and LM11), and galactoglucomannan (LM21 and LM22). Lignin and crystalline cellulose were localized on the same sections used for immunocytochemistry by autofluorescence and polarized light microscopy, respectively. Changes in the distribution of noncellulosic polysaccharides between normal and compression wood were associated with changes in lignin distribution. Increased lignification of compression wood secondary walls was associated with novel deposition of β(1,4)-galactan and with reduced amounts of xylan and mannan in the outer S2 (S2L) region of tracheids. Xylan and mannan were detected in all lignified xylem cell types (tracheids, ray tracheids, and thick-walled ray parenchyma) but were not detected in unlignified cell types (thin-walled ray parenchyma and resin canal parenchyma). Mannan was absent from the highly lignified compound middle lamella, but xylan occurred throughout the cell walls of tracheids. Using colocalization measurements, we confirmed that polysaccharides containing galactose, mannose, and xylose have consistent correlations with lignification. Low or unsubstituted xylans were localized in cell wall layers characterized by transverse cellulose microfibril orientation in both normal and compression wood tracheids. Our results support the theory that the assembly of wood cell walls, including lignification and microfibril orientation, may be mediated by changes in the amount and distribution of noncellulosic polysaccharides.  相似文献   

17.
To be utilized in biomass conversion, including ethanol production and galactosylated oligosaccharide synthesis, namely prebiotics, the gene of extracellular endo‐β‐1,4‐mannanase (EC 3.2.1.78) of Aspergillus fumigatus IMI 385708 (formerly known as Thermomyces lanuginosus IMI 158749) was expressed first in Aspergillus sojae and then in Pichia pastoris under the control of the glyceraldehyde triphosphate dehydrogenase (gpdA ) and the alcohol oxidase (AOX1 ) promoters, respectively. The highest production of mannanase (352 U mL?1) in A. sojae was observed after 6 days of cultivation. In P. pastoris, the highest mannanase production was observed 10 h after induction with methanol (61 U mL?1). The fold increase in mannanase production was estimated as ~12‐fold and ~2‐fold in A. sojae and P. pastoris, respectively, when compared with A. fumigatus. Both recombinant enzymes showed molecular mass of about 60 kDa and similar specific activities (~350 U mg?1 protein). Temperature optima were at 60°C and 45°C, and maximum activity was at pH 4.5 and 5.2 for A. sojae and P. pastoris, respectively. The enzyme from P. pastoris was more stable retaining most of the activity up to 50°C, whereas the enzyme from A. sojae rapidly lost activity above 40°C. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

18.
The fungal cell wall is a dynamic organelle required for cell shape, protection against the environment and, in pathogenic species, recognition by the innate immune system. The outer layer of the cell wall is comprised of glycosylated mannoproteins with the majority of these post‐translational modifications being the addition of O‐ and N‐linked mannosides. These polysaccharides are exposed on the outer surface of the fungal cell wall and are, therefore, the first point of contact between the fungus and the host immune system. This review focuses on O‐ and N‐linked mannan biosynthesis in the fungal pathogen Candida albicans and highlights new insights gained from the characterization of mannosylation mutants into the role of these cell wall components in host–fungus interactions. In addition, we discuss the use of fungal mannan as a diagnostic marker of fungal disease.  相似文献   

19.
The endo‐β‐1,3‐1,4‐glucanases are glycoside hydrolases involved in the enzymatic depolymerization of 1,3‐1,4 β‐glucans and showed an antifungal activity against some fungi. Bacillus amyloliquefaciensBLB369 has a high antagonistic activity against phytopathogenic fungi. Its glu369 full‐coding sequence of the endo‐β‐1,3‐1,4‐glucanase gene (732 bp) was sequenced, cloned and successfully expressed in Escherichia coli Top10. The encoded protein (243 amino acids) has a calculated molecular mass of 27.3 kDa. To simplify the purification procedure, the glu369 coding sequence was cloned into the vector pKJD4. The produced OmpA‐His‐Glu369 harboured OmpA signal sequence for E. coli periplasmic localization and followed by a 6His residues for its purification. The purified His‐tagged proteins revealed two bands on SDS‐PAGE analysis with molecular masses of about 30.5 (His‐Glu369) and 32.5 kDa (OmpA‐His‐Glu369). They had the ability to inhibit the growth of phytopathogenic fungus Alternaria alternata. These favourable properties make the endo‐β‐1,3‐1,4‐glucanase a good candidate for biotechnological applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号