首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The application of lithium (Li) metal anodes in Li metal batteries has been hindered by growth of Li dendrites, which lead to short cycling life. Here a Li‐ion‐affinity leaky film as a protection layer is reported to promote a dendrite‐free Li metal anode. The leaky film induces electrokinetic phenomena to enhance Li‐ion transport, leading to a reduced Li‐ion concentration polarization and homogeneous Li‐ion distribution. As a result, the dendrite‐free Li metal anode during Li plating/stripping is demonstrated even at an extremely high deposition capacity (6 mAh cm?2) and current density (40 mA cm?2) with improved Coulombic efficiencies. A full cell battery with the leaky‐film protected Li metal as the anode and high‐areal‐capacity LiNi0.8Co0.1Mn0.1O2 (NCM‐811) (≈4.2 mAh cm?2) or LiFePO4 (≈3.8 mAh cm?2) as the cathode shows improved cycling stability and capacity retention, even at lean electrolyte conditions.  相似文献   

2.
Structural/compositional characteristics at the anode/electrolyte interface are of paramount importance for the practical performance of lithium ion batteries, including cyclic stability, rate capacity, and operational safety. The anode‐electrolyte interface with traditional separator technology is featured with inevitable phase discontinuity and fails to support the stable operation of lithium ion batteries based on large‐capacity anodes with structural change in charges/discharges, such as transition metal oxide anodes. In this work, an anode/electrolyte framework based on an oxide anode and an active‐oxide‐incorporated separator is proposed for the first time and investigated for lithium ion batteries. The architecture builds a robust anode‐separator interface in LIBs, shortens Li+ diffusion path, accelerates electron transport, and mitigates the volume change of the oxide anode in electrochemical reactions. Remarkably, 4 wt% CuO addition in the separator leads to a 17% enhancement in the overall capacity of a battery with a CuO anode. The battery delivers an unparalleled record reversible capacity of 637.2 mAh g?1 with a 99% capacity retention after 100 charge/discharge cycles at 0.5 C. The high performance are attributed to the robust anode‐separator interface, which gives rise to enhanced interaction between the oxide anode and the same‐oxide‐incorporated composite in the separator.  相似文献   

3.
The high‐polarity β‐phase poly(vinylidene difluoride) (β‐PVDF), which has all trans conformation with F and H atoms located on the opposite sides of the polymer backbone, is demonstrated to be a promising artificial solid‐electrolyte interphase coating on both Cu and Li metal anodes for dendrite‐free Li deposition/stripping and enhanced cycling performance. A thin (≈4 µm) β‐PVDF coating on Cu enables uniform Li deposition/stripping at high current densities up to 5 mA cm?2, Li‐plating capacity loadings of up to 4 mAh cm?2, and excellent cycling stability over hundreds of cycles under practical conditions (1 mA cm?2 with 2 mAh cm?2). Full cells containing an LiFePO4 cathode and an anode of either β‐PVDF coated Cu or Li also exhibit excellent cycling stability. The profound effects of the high‐polarity PVDF coating on dendrite suppression are attributed to the electronegative F‐rich interface that favors layer‐by‐layer Li deposition. This study offers a new strategy for the development of dendrite‐free metal anode technology.  相似文献   

4.
Li metal anodes are going through a great revival but they still encounter grand challenges. One often neglected issue is that most reported Li metal anodes are only cyclable under relatively low current density (<5 mA cm?2) and small areal capacity (<5 mAh cm?2), which essentially limits their high‐power applications and results in ineffective Li utilization (<1%). Herein, it is reported that surface alloyed Li metal anodes can enable reversible cycling with ultrafast rate and ultralarge areal capacity. Low‐cost Si wafers are used and are chemically etched down to 20–30 µm membranes. Simply laminating a Si membrane onto Li foil results in the formation of LixSi alloy film fused onto Li metal with mechanical robustness and high Li‐ion conductivity. Symmetric cell measurements show that the surface alloyed Li anode has excellent cycling stability, even under high current density up to 25 mA cm?2 and unprecedented areal capacity up to 100 mAh cm?2. Furthermore, the surface alloyed Li anode is paired with amorphous MoS3 cathode and achieves remarkable full‐cell performance.  相似文献   

5.
As a primary component in lithium–sulfur (Li–S) batteries, the separator may require a custom design in order to facilitate electrochemical stability and reversibility. Here, a custom separator with an activated carbon nanofiber (ACNF)‐filter coated onto a polypropylene membrane is presented. The entire configuration is comprised of the ACNF filter arranged adjacent to the sulfur cathode so that it can filter out the freely migrating polysulfides and suppress the severe polysulfide diffusion. Four differently optimized ACNF‐filter‐coated separators have been developed with tunable micropores as an investigation into the electrochemical and engineering design parameters of functionalized separators. The optimized parameters that are verified by electrochemical and microstructural analyses require the coated ACNF filter to possess the following: (i) a porous architecture with abundant micropores, (ii) small micropore sizes, and (iii) high electrical conductivity and effective electrolyte immersion. It is found that the ACNF20‐filter‐coated separator demonstrates an overall superior boost in the electrochemical utilization (discharge capacity: 1270 mA h g?1) and polysulfide retention (capacity fade rate: 0.13% cycle?1 after 200 cycles). These results show that the modified thin‐film‐coating technique is a viable approach to designing ultratough ACNF‐filter‐coated separators with outstanding mechanical strength and flexibility as an advanced component in Li–S cells.  相似文献   

6.
Similar to Li–S batteries, Li–organic batteries have also been plagued by the dissolution of active materials and the resulting shuttle effect for many years. An effective strategy to eliminate the shuttle effect is adopting solid electrolytes or Li–ion permselective separators to prohibit the dissolved electroactive species from migrating to the Li anode. A polypropylene/Nafion/polypropylene (PNP) sandwich‐type separator is reported with many advantages in comparison with previously reported LISICON, polymer electrolyte, and other Nafion utilization forms. The physical and chemical properties of PNP separators are studied in detail by cross‐section scanning electron microscopy (SEM), infrared spectroscopy (IR), and electrochemical impedance spectroscopy. 1,1′‐Iminodianthraquinone (IDAQ), a novel organic cathode, is taken as an example to quantitatively investigate the function of PNP separators. In the presence of PNP5 with the most appropriate Nafion loading of 0.5 mg cm–2, IDAQ is able to achieve dramatically improved cycling stability with capacity retention of 76% after 400 cycles and Coulombic efficiency above 99.6%, which reaches the highest level for reported soluble organic electrode materials. Besides Li–organic batteries, such kind of Nafion‐based sandwich‐type separators are also promising for Li–S batteries and other new battery designs involving dissolved electroactive species.  相似文献   

7.
Li metal, which has a high theoretical specific capacity and low redox potential, is considered to the most promising anode material for next‐generation Li ion‐based batteries. However, it also exhibits a disadvantageous solid electrolyte interphase (SEI) layer problem that needs to be resolved. Herein, an advanced separator composed of reduced graphene oxide fiber attached to aramid paper (rGOF‐A) is introduced. When rGOF‐A is applied, F? anions, generated from the decomposition of the LiPF6 electrolyte during the SEI layer formation process form semi‐ionic C? F bonds along the surface of rGOF. As Li+ ions are plated, the “F‐doped” rGO surface induces the formation of LiF, which is known as a component of a chemically stable SEI, therefore it helps the Li metal anode to operate stably at a high current of 20 mA cm?2 with a high capacity of 20 mAh cm?2. The proposed rGOF‐A separator successfully achieves a stable SEI layer that could resolve the interfacial issues of the Li metal anode.  相似文献   

8.
Selenium (Se), due to its high electronic conductivity and high energy density, has recently attracted considerable interest as a cathode material for rechargeable Li/Na batteries. However, the poor cycling stability originating from the severe shuttle effect of polyselenides hinders their practical applications. Herein, highly stable Li/Na–Se batteries are developed using ultrathin (≈270 nm, loading of 0.09 mg cm?2) cetrimonium bromide (CTAB)/carbon nanotube (CNT)/Ti3C2Tx MXene hybrid modified polypropylene (PP) (CCNT/MXene/PP) separators. The hybrid separator can immobilize the polyselenides via enhanced Lewis acid–base interactions between CTAB/MXene and polyselenides, which is demonstrated by theoretical calculations and X‐ray photoelectron spectroscopy. The incorporation of CNT helps to improve the electrolyte infiltration and facilitate the ionic transport. In situ permeation experiments are conducted for the first time to visually study the behavior of polyselenides, revealing the prohibited shuttle effect and protected Li anode from corrosion with CCNT/MXene/PP separators. As a result, the Li–Se batteries with CCNT/MXene/PP separators deliver an outstanding cycling performance over 500 cycles at 1C with an extremely low capacity decay of 0.05% per cycle. Moreover, the hybrid separators also perform well in Na–Se batteries. This study develops a preferable separator–electrolyte interface and the concept can be applied in other conversion‐type battery systems.  相似文献   

9.
A significant volume expansion exhibited by high‐capacity active materials upon lithiation has hindered their application as Li‐ion battery anode materials. Although tremendous progress has been made in the development of coating methods that improve the stability of high‐capacity active materials, suitable coating sources that are both strong and economical to use are yet to be discovered. Pitch is reported here as a promising coating source for high‐capacity anodes owing to the high mechanical strength and low‐cost process. Using in situ transmission electron microscopy, it is found that pitch can withstand the severe volume expansion that occurs upon Si lithiation owing to its high mechanical strength, originating from the long‐range graphitic ordering. Notably, pitch‐coated silicon nanolayer–embedded graphite (SG) exhibits superior capacity retention (81.9%) compared to that of acetylene‐coated SG (66%) over 200 cycles in a full‐cell by effectively mitigating volume expansion, even under industrial electrode density conditions (1.6 g cc?1). Thus, this work presents new possibilities for the development of high‐capacity anodes for industrial implementation.  相似文献   

10.
Although metallic lithium is regarded as the “Holy Grail” for next‐generation rechargeable batteries due to its high theoretical capacity and low overpotential, the uncontrollable Li dendrite growth, especially under high current densities and deep plating/striping, has inhibited its practical application. Herein, a 3D‐printed, vertically aligned Li anode (3DP‐VALi) is shown to efficiently guide Li deposition via a “nucleation within microchannel walls” process, enabling a high‐performance, dendrite‐free Li anode. Moreover, the microchannels within the microwalls are beneficial for promoting fast Li+ diffusion, supplying large space for the accommodation of Li during the plating/stripping process. The high‐surface‐area 3D anode design enables high operating current densities and high areal capacities. As a result, the Li–Li symmetric cells using 3DP‐VALi demonstrate excellent electrochemical performances as high as 10 mA cm?2/10 mAh cm?2 for 1500 h and 5 mA cm?2/20 mAh cm?2 for 400 h, respectively. Additionally, the Li–S and Li–LiFePO4 cells using 3DP‐VALi anodes present excellent cycling stability up to 250 and 800 cycles at a rate of 1 C, respectively. It is believed that these new findings could open a new window for dendrite‐free metal anode design and pave the way toward energy storage devices with high energy/power density.  相似文献   

11.
Secondary batteries based on earth‐abundant potassium metal anodes are attractive for stationary energy storage. However, suppressing the formation of potassium metal dendrites during cycling is pivotal in the development of future potassium metal‐based battery technology. Herein, a promising artificial solid‐electrolyte interphase (ASEI) design, simply covering a carbon nanotube (CNT) film on the surface of a potassium metal anode, is demonstrated. The results show that the spontaneously potassiated CNT framework with a stable self‐formed solid‐electrolyte interphase layer integrates a quasi‐hosting feature with fast interfacial ion transport, which enables dendrite‐free deposition of potassium at an ultrahigh capacity (20 mAh cm?2). Remarkably, the potassium metal anode exhibits an unprecedented cycle life (over 1000 cycles, over 2000 h) at a high current density of 5 mA cm?2 and a desirable areal capacity of 4 mAh cm?2. Dendrite‐free morphology in carbon‐fiber and carbon‐black‐based ASEI for potassium metal anodes, which indicates a broader promise of this approach, is also observed.  相似文献   

12.
Lithium–sulfur (Li–S) batteries are of great interest due to their high theoretical energy density. However, one of the key issues hindering their real world applications is polysulfide shuttle, which results in severe capacity decay and self‐discharge. Here, a laponite nanosheets/carbon black coated Celgard (LNS/CB‐Celgard) separator to inhibit polysulfide shuttle and to enhance the Li+ conductivity simultaneously is reported. The polysulfide shuttle is efficiently inhibited through strong interactions between the O active sites of the LNS and polysulfides by forming the Li···O and O? S bonds. Moreover, the separator features high Li+ conductivity, fast Li+ diffusion, excellent electrolyte wettability, and high thermal stability. Consequently, the Li–S batteries with the LNS/CB‐Celgard separator and the pure S cathode show a high initial reversible capacity of 1387 mA h g?1 at 0.1 C, high rate performance, superior cycling stability (with a capacity decay rate of 0.06% cycle?1 at 0.2 C and 0.028% cycle?1 at 1.0 C over 500 cycles), and ultralow self‐discharge. The separator could also enhance the performance of other batteries such as the LiFePO4/separator/Li battery. This work sheds a new light on the design and preparation of novel separators for highly stable Li–S batteries via a “green” and cost‐effective approach.  相似文献   

13.
Conventional graphite anodes can hardly intercalate sodium (Na) ions, which poses a serious challenge for developing Na‐ion batteries. This study details a novel method that involves single‐step laser‐based transformation of urea‐containing polyimide into an expanded 3D graphene anode, with simultaneous doping of high concentrations of nitrogen (≈13 at%). The versatile nature of this laser‐scribing approach enables direct bonding of the 3D graphene anode to the current collectors without the need for binders or conductive additives, which presents a clear advantage over chemical or hydrothermal methods. It is shown that these conductive and expanded 3D graphene structures perform exceptionally well as anodes for Na‐ion batteries. Specifically, an initial coulombic efficiency (CE) up to 74% is achieved, which exceeds that of most reported carbonaceous anodes, such as hard carbon and soft carbon. In addition, Na‐ion capacity up to 425 mAh g?1 at 0.1 A g?1 has been achieved with excellent rate capabilities. Further, a capacity of 148 mAh g?1 at a current density of 10 A g?1 is obtained with excellent cycling stability, opening a new direction for the fabrication of 3D graphene anodes directly on current collectors for metal ion battery anodes as well as other potential applications.  相似文献   

14.
The electrochemical performance of mesoporous carbon (C)/tin (Sn) anodes in Na‐ion and Li‐ion batteries is systematically investigated. The mesoporous C/Sn anodes in a Na‐ion battery shows similar cycling stability but lower capacity and poorer rate capability than that in a Li‐ion battery. The desodiation potentials of Sn anodes are approximately 0.21 V lower than delithiation potentials. The low capacity and poor rate capability of C/Sn anode in Na‐ion batteries is mainly due to the large Na‐ion size, resulting in slow Na‐ion diffusion and large volume change of porous C/Sn composite anode during alloy/dealloy reactions. Understanding of the reaction mechanism between Sn and Na ions will provide insight towards exploring and designing new alloy‐based anode materials for Na‐ion batteries.  相似文献   

15.
Lithium metal is the most promising anode material for next‐generation batteries, owing to its high theoretical specific capacity and low electrochemical potential. However, the practical application of lithium metal batteries (LMBs) has been plagued by the issues of uncontrollable lithium deposition. The multifunctional nanostructured anode can modulate the initial nucleation process of lithium before the extension of dendrites. By combing the theoretical design and experimental validation, a novel nucleation strategy is developed by introducing sulfur (S) to graphene. Through first‐principles simulations, it is found that S atom doping can improve the Li adsorption ability on a large area around the S doping positions. Consequently, S‐doped graphene with five lithiophilic sites rather than a single atomic site can serve as the pristine nucleation area, reducing the uneven Li deposition and improving the electrochemical performance. Modifying Li metal anodes by S‐doped graphene enables an ultralow overpotential of 5.5 mV, a high average Coulombic efficiency of 99% over more than 180 cycles at a current density of 0.5 mA cm?2 for 1.0 mAh cm?2, and a high areal capacity of 3 mAh cm?2. This work sheds new light on the rational design of nucleation area materials for dendrite‐free LMB.  相似文献   

16.
Lithium (Li) metal anodes are promising candidates for high‐energy‐density batteries. However, uncontrollable dendritic plating behavior and infinite volume expansion are hindering their practical applications. Herein, a novel CuO@Ti‐mesh (CTM) is prepared by microwave‐assisted reactions, followed by pressing on Li wafers, leading to Li/CuO@Ti‐mesh (LCTM) composite anodes. The lithiophilic CuO nanoflowers on Ti‐mesh provides evenly distributed nucleation sites, inducing uniform Li‐ion lateral plating, which can effectively inhibit the growth of Li dendrites and volume expansion during cycling. The as‐prepared LCTM composite anode exhibits high Coulombic efficiency (CE) of 94.2% at 10 mA cm‐2 over 90 cycles. Meanwhile, the LCTM anode shows a low overpotential of 50 mV at 10 mA cm‐2 over 16 000 cycles and a low overpotential of 90 and 250 mV even at ultrahigh current densities of 20 and 40 mA cm‐2. When paired with Li4Ti5O12 (LTO), it enhances the capacity retention of LTO/Li wafer full cells by about two times from 36.6% to 73.0% and 42.0% to 80.0% at 5C and 10C with long‐term cycling. It is hoped that this LCTM anode with ultrahigh rates and ultralong cycle life may put Li‐metal anode forward to practical applications, such as in Li–S, Li‐air batteries, etc.  相似文献   

17.
Safe rechargeable batteries of improved energy density and high power performance are urgently needed for the development of large electric devices. Herein, an Li‐based organic liquid anode is proposed, and an organic oxygen battery with a metal organic framework membrane separator is realized, which is able to conduct Li ions and separate other large species in the system. Equipped with the dual redox mediator strategy, the organic oxygen battery exhibits superior rate performance with long cycling life and low overpotential. A “solid electrolyte interface”‐like layer is observed between the organic liquid anode and the ion conducting separator. This work not only introduces a new type of anode for Li‐based batteries, but also provides fundamental insights for the better application of biphenyl‐based liquid anodes.  相似文献   

18.
Described here is the production and characterization of a scalable method to produce 3D structured lithium ion battery anodes using free‐standing papers of porous silicon nanowires (Si‐NW) and graphene nanoribbons (GNRs). Using simple filtration methods, GNRs and Si‐NWs can be entangled into a mat thereby forming Si‐NW GNR papers. This produces anodes with high gravimetric capacity (up to 2500 mA h g?1) and high areal and volumetric capacities (up to 11 mA h cm?2 and 3960 mA h cm?3). The compact structure of the anode is possible since the GNR volume occupies a high proportion of empty space within the composite paper. These Si‐NW/GNR papers have been cycled for over 300 cycles, exhibiting a stable life cycle. Combined with LiCoO2 nanowires, a full battery is produced with high energy density (386 Wh kg?1), meeting requirements for high performance devices.  相似文献   

19.
Powering soft embodiments of robots, machines and electronics is a key issue that impacts emerging human friendly forms of technologies. Batteries as energy source enable their untethered operation at high power density but must be rendered elastic to fully comply with (soft) robots and human beings. Current intrinsically stretchable batteries typically show decreased performance when deformed due to design limitations, mainly imposed by the separator material. High quality stretchable separators such as gel electrolytes represent a key component of soft batteries that affects power, internal resistance, and capacity independently of battery chemistry. Here, polymerized high internal phase emulsions (polyHIPEs) are introduced as highly ionically conductive separators in stretchable (rechargeable) batteries. Highly porous (>80%) separators result in electrolyte to polyHIPE conductivity ratios of below 2, while maintaining stretchability of ≈50% strain. The high stretchability, tunable porosity, and fast ion transport enable stretchable batteries with internal resistance below 3 Ω and 16.8 mAh cm?2 capacity that power on‐skin processing and communication electronics. The battery/separator architecture is universally applicable to boost battery performance and represents a step towards autonomous operation of conformable electronic skins for healthcare, robotics, and consumers.  相似文献   

20.
Lithium–sulfur (Li‐S) batteries are a promising next‐generation energy‐storage system, but the polysulfide shuttle and dendritic Li growth seriously hinder their commercial viability. Most of the previous studies have focused on only one of these two issues at a time. To address both the issues simultaneously, presented here is a highly conductive, noncarbon, 3D vanadium nitride (VN) nanowire array as an efficient host for both sulfur cathodes and lithium‐metal anodes. With fast electron and ion transport and high porosity and surface area, VN traps the soluble polysulfides, promotes the redox kinetics of sulfur cathodes, facilitates uniform nucleation/growth of lithium metal, and inhibits lithium dendrite growth at an unprecedented high current density of 10 mA cm?2 over 200 h of repeated plating/stripping. As a result, VN‐Li||VN‐S full cells constructed with VN as both an anode and cathode host with a negative to positive electrode capacity ratio of only ≈2 deliver remarkable electrochemical performance with a high Coulombic efficiency of ≈99.6% over 850 cycles at a high 4 C rate and a high areal capacity of 4.6 mA h cm?2. The strategy presented here offers a viable approach to realize high‐energy‐density, safe Li‐metal‐based batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号