首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Noccaea caerulescens (Brassicaceae) is a major pseudometallophyte model for the investigation of the genetics and evolution of metal hyperaccumulation in plants. We studied the population genetics and demographic history of this species to advance the understanding of among‐population differences in metal hyperaccumulation and tolerance abilities. Sampling of seven to 30 plants was carried out in 62 sites in Western Europe. Genotyping was carried out using a combination of new chloroplast and nuclear neutral markers. A strong genetic structure was detected, allowing the definition of three genetic subunits. Subunits showed a good geographic coherence. Accordingly, distant metallicolous populations generally belonged to distinct subunits. Approximate Bayesian computation analysis of demographic scenarios among subunits further supported a primary isolation of populations from the southern Massif Central prior to last glacial maximum, whereas northern populations may have derived during postglacial recolonization events. Estimated divergence times among subunits were rather recent in comparison with the species history, but certainly before the establishment of anthropogenic metalliferous sites. Our results suggest that the large‐scale genetic structure of N. caerulescens populations pre‐existed to the local adaptation to metalliferous sites. The population structure of quantitative variation for metal‐related adaptive traits must have established independently in isolated gene pools. However, features of the most divergent genetic unit (e.g. extreme levels of Cd accumulation observed in previous studies) question the putative relationships between adaptive evolution of metal‐related traits and subunits isolation. Finally, admixture signals among distant metallicolous populations suggest a putative role of human activities in facilitating long‐distance genetic exchanges.  相似文献   

4.
Thlaspi caerulescens is a metallophyte that is able to hyperaccumulate Zn. In the present study the subcellular compartmentation of Zn was investigated in roots and leaves of this species by means of X-ray microanalysis. Leaves accumulated higher average Zn concentrations than roots. In roots of plants exposed to 10 μM Zn, Zn concentrations in the apoplast were similar to those in vacuoles, while in plants treated with 100 μM Zn considerably higher Zn concentrations were detected in vacuoles than in the apoplast. In epidermal and sub-epidermal cells of leaves of plants from both treatments, Zn mainly accumulated in vacuoles and, to a lesser extent, in the apoplast. In vacuoles from plants exposed to 100 μM Zn, high Zn concentrations were associated with variable amounts of P, Ca and K. In leaves, the highest Zn concentrations (13,600 μg g?1 d.m.) were found in globular crystals present in many vacuoles of epidermal and subepidermal cells. Smaller deposits with a variable Zn concentration between 1,000 and 18,300 μg g?1 d.m. were observed in the epidermal and subepidermal cells of roots. Both the high Zn/P element ratios found in the crystals and the absence of Mg indicate that, in contrast to other plant species, myo-inositol hexaphosphate (phytate) is not the main storage form for Zn in Thlaspi caerulescens.  相似文献   

5.
6.
7.
Ebbs S  Lau I  Ahner B  Kochian L 《Planta》2002,214(4):635-640
Thlaspi caerulescens (J. & C. Presl, "Prayon") is a heavy-metal hyperaccumulator that accumulates Zn and Cd to high concentrations (40,000 and 4,000 mg kg DW-1 respectively) without phytotoxicity. The mechanism of Cd tolerance has not been characterized but reportedly involves vacuolar sequestration. The role of phytochelatins (PCs) in metal tolerance in T. caerulescens and the related non-accumulator T. arvense was examined. Although PCs were produced by both species in response to Cd, these peptides do not appear to be involved in metal tolerance in the hyperaccumulator. Leaf and root PC levels for both species showed a similar positive correlation with tissue Cd, but total PC levels in the hyperaccumulator were generally lower, despite correspondingly higher metal concentrations. The lack of a role for PCs in the hyperaccumulator's response to metal stress suggests that other mechanisms are responsible Cd tolerance. The lower level of leaf PCs in T. caerulescens also implies that Cd in the shoot is sequestered in a compartment or form that does not elicit a PC response.  相似文献   

8.
As part of our search for new bioactive saponins from Cameroonian medicinal plants, two new oleanane‐type saponins, named gummiferaosides D and E ( 1 and 2 ), along with one known saponin, julibroside J8 ( 3 ), were isolated from the roots of Albizia gummifera. Their structures were established on the basis of extensive 1D‐ and 2D‐NMR (1H‐ and 13C‐NMR, DEPT, COSY, TOCSY, NOESY, HSQC, HSQC‐TOCSY, and HMBC) and HR‐ESI‐MS studies, and by chemical evidence. The apoptotic effect of saponins 1  –  3 was evaluated on the A431 human epidermoid cancer cell. Flow cytometric analyses showed that saponins 1  –  3 induced apoptosis of human epidermoid cancer cell (A431) in a dose‐dependent manner.  相似文献   

9.
Leucobryum boninense is endemic to the Bonin Islands, Japan, and its related species are widely distributed in Asia and the Pacific. We aimed to clarify the phylogenetic relationships among Leucobryum species and infer the origin of L. boninense. We also describe the utility of the chloroplast trnK intron including matK for resolving the phylogenetic relationships among Leucobryum species, as phylogenetic analyses using trnK intron and/or matK have not been performed well in bryophytes to date. Fifty samples containing 15 species of Leucobryum from Asia and the Pacific were examined for six chloroplast DNA regions including rbcL, rps4, partial 5′ trnK intron, matK, partial 3′ trnK intron, and trnLF intergenic spacer plus one nuclear DNA region including ITS. A molecular phylogenetic tree showed that L. boninense made a clade with L. scabrum from Japan, Taiwan and, Hong Kong; L. javense which is widely distributed in East and Southeast Asia, and L. pachyphyllum and L. seemannii restricted to the Hawaii Islands, as well as with L. scaberulum from the Ryukyus, Japan, Taiwan, and southeastern China. Leucobryum boninense from various islands of the Bonin Islands made a monophylic group that was closely related to L. scabrum and L. javense from Japan. Therefore, Lboninense may have evolved from L. scabrum from Japan, Taiwan, or Hong Kong, or L. javense from Japan. We also described the utility of trnK intron including matK. A percentage of the parsimony‐informative characters in trnK intron sequence data (5.8%) was significantly higher than that from other chloroplast regions, rbcL (2.4%) and rps4 (3.2%) sequence data. Nucleotide sequence data of the trnK intron including matK are more informative than other chloroplast DNA regions for identifying the phylogenetic relationships among Leucobryum species.  相似文献   

10.
Developing tissues such as meristem with low transpiration require high Zn levels for their active growth, but the molecular mechanisms underlying the preferential distribution to these tissues are poorly understood. We found that a member of the ZIP (ZRT, IRT‐like protein), OsZIP3, showed high expression in the nodes of rice (Oryza sativa). Immunostaining revealed that OsZIP3 was localized at the xylem intervening parenchyma cells and xylem transfer cells of the enlarged vascular bundle in both basal and upper nodes. Neither OsZIP3 gene expression nor encoded protein was affected by either deficiency or toxic levels of Zn. Knockdown of OsZIP3 resulted in significantly reduced Zn levels in the shoot basal region containing the shoot meristem and elongating zone, but increased Zn levels in the transpiration flow. A short‐term experiment with the 67Zn stable isotope showed that more Zn was distributed to the lower leaves, but less to the shoot elongating zone and nodes in the knockdown lines compared with the wild‐type rice at both the vegetative and reproductive growth stages. Taken together, OsZIP3 located in the node is responsible for unloading Zn from the xylem of enlarged vascular bundles, which is the first step for preferential distribution of Zn to the developing tissues in rice.  相似文献   

11.
12.
The subfamily Crucigenioideae was traditionally classified within the well‐characterized family Scenedesmaceae (Chlorophyceae). Several morpho‐logical revisions and questionable taxonomic changes hampered the correct classification of crucigenoid species resulting in a high number of synonymous genera. We used a molecular approach to determine the phylogenetic position of several Tetrastrum and Crucigenia species. The molecular results were correlated with morphological and ontogenetic characters. Phylogenetic analyses of the SSU rDNA gene resolved the position of Tetrastrum heteracanthum and T. staurogeniaeforme as a new lineage within the Oocystis clade of the Trebouxiophyceae. Crucigenia tetrapedia, T. triangulare, T. punctatum, and T. komarekii were shown to be closely related to Botryococcus (Trebouxiophyceae) and were transferred to Lemmer‐mannia. Crucigenia lauterbornii was not closely related to the other Crucigenia strains, but was recovered within the Chlorella clade of the Trebouxiophyceae.  相似文献   

13.
Diatoms are one of the most abundant and arguably the most species‐rich group of protists. Diatom species delimitation has often been based exclusively on the recognition of morphological discontinuities without investigation of other lines of evidence. Even though DNA sequences and reproductive experiments have revealed several examples of (pseudo)cryptic diversity, our understanding of diatom species boundaries and diversity remains limited. The cosmopolitan pennate raphid diatom genus Pinnularia represents one of the most taxon‐rich diatom genera. In this study, we focused on the delimitation of species in one of the major clades of the genus, the Pinnularia subgibba group, based on 105 strains from a worldwide origin. We compared genetic distances between the sequences of seven molecular markers and selected the most variable pair, the mitochondrial cox1 and nuclear encoded LSU rDNA, to formulate a primary hypothesis on the species limits using three single‐locus automated species delimitation methods. We compared the DNA‐based primary hypotheses with morphology and with other available lines of evidence. The results indicate that our data set comprised 15 species of the P. subgibba group. The vast majority of these taxa have an uncertain taxonomic identity, suggesting that several may be unknown to science and/or members of (pseudo)cryptic species complexes within the P. subgibba group.  相似文献   

14.
Erinacine A, a major active component of a diterpenoid derivative isolated from Hericium erinaceus mycelium, has been demonstrated to exert anticancer effects. Herein, we present an investigation of the molecular mechanism of erinacine A induction associated with cancer cells’ aggressive status and death. A proteomic approach was used to purify and identify the differentially expressed proteins following erinacine A treatment and the mechanism of its action in apoptotic and the targets of erinacine A. Our results demonstrate that erinacine A treatment of HCT‐116 and DLD‐1 cells increased cell cytotoxicity and reactive oxygen species (ROS) production as well as decreased cell proliferation and invasiveness. Ten differentially displayed proteins were determined and validated in vitro and in vivo between the erinacine A‐treated and untreated groups. In addition, erinacine A time‐dependent induction of cell death and inhibitory invasiveness was associated with sustained phosphorylation of the PI3K/mTOR/p70S6K and ROCK1/LIMK2/Cofilin pathways. Furthermore, we demonstrated that erinacine A–induced HCT‐116 and DLD‐1 cells viability and anti‐invasion properties by up‐regulating the activation of PI3K/mTOR/p70S6K and production of ROS. Experiments involving specific inhibitors demonstrated that the differential expression of cofilin‐1 (COFL1) and profilin‐1 (PROF1) during erinacine A treatment could be involved in the mechanisms of HCT‐116 and DLD‐1 cells death and decreased aggressiveness, which occurred via ROCK1/LIMK2/Cofilin expression, with activation of the PI3K/mTOR/p70S6K signalling pathway. These findings elucidate the mechanism of erinacine A inhibiting the aggressive status of cells by activating PI3K/mTOR/p70S6K downstream signalling and the novel protein targets COF1 and PROF1; this could be a good molecular strategy to limit the aggressiveness of CRC cells.  相似文献   

15.
We have undertaken a comprehensive, molecular‐assisted alpha‐taxonomic examination of the rhodophyte family Liagoraceae sensu lato, a group that has not previously been targeted for molecular studies in the western Atlantic. Sequence data from three molecular markers indicate that in Bermuda alone there are 10 species in nine different genera. These include the addition of three genera to the flora — Hommersandiophycus, Trichogloeopsis, and Yamadaella. Liagora pectinata, a species with a type locality in Bermuda, is phylogenetically allied with Indo‐Pacific species of Hommersandiophycus, and the species historically reported as L. ceranoides for the islands is morphologically and genetically distinct from that taxon, and is herein described as L. nesophila sp. nov. Molecular sequence data have also uncovered the Indo‐Pacific L. mannarensis in Bermuda, a long‐distance new western Atlantic record. DNA sequences of Trichogloeopsis pedicellata from the type locality (Bahamas) match with local specimens demonstrating its presence in Bermuda. We described Yamadaella grassyi sp. nov. from Bermuda, a species phylogenetically and morphologically distinct from the generitype, Y. caenomyce of the Indo‐Pacific. Our data also indicated a single species each of Ganonema, Gloiocallis, Helminthocladia, Titanophycus, and Trichogloea in the flora.  相似文献   

16.
17.
18.
Interspecific hybridization is a primary cause of extensive morphological and chromosomal variation and plays an important role in plant species diversification. However, the role of interploidal hybridization in the formation of hybrid swarms is less clear. Epidendrum encompasses wide variation in chromosome number and lacks strong premating barriers, making the genus a good model for clarifying the role of chromosomes in postzygotic barriers in interploidal hybrids. In this sense, hybrids from the interploidal sympatric zone between E. fulgens (2n = 2x = 24) and E. puniceoluteum (2n = 4x = 56) were analyzed using cytogenetic techniques to elucidate the formation and establishment of interploidal hybrids. Hybrids were not a uniform group: two chromosome numbers were observed, with the variation being a consequence of severe hybrid meiotic abnormalities and backcrossing with E. puniceoluteum. The hybrids were triploids (2n = 3x = 38 and 40) and despite the occurrence of enormous meiotic problems associated with triploidy, the hybrids were able to backcross, producing successful hybrid individuals with broad ecological distributions. In spite of the nonpolyploidization of the hybrid, its formation is a long‐term evolutionary process rather than a product of a recent disturbance, and considering other sympatric zones in Epidendrum, these events could be recurrent.  相似文献   

19.
A stem blight disease was observed on the lower portions of Brassica juncea stems during the cropping season (2010–2011). In advanced stages, the lesions were up to 120 cm in length on the stems and also spread to petioles and midribs of leaves. The purified fungus was identified as Nigrospora oryzae (Berk. & Br.) Petch (teleomorph Khuskia oryzae), which produced similar symptoms when healthy B. juncea plants were inoculated, thus proving Koch's postulates. This is the first report of the occurrence of N. oryzae on B. juncea.  相似文献   

20.
Previous molecular assessments of the red algal order Rhodymeniales have confirmed its monophyly and distinguished the six currently recognized families (viz. Champiaceae, Faucheaceae, Fryeellaceae, Hymenocladiaceae, Lomentariaceae, and Rhodymeniaceae); however, relationships among most of these families have remained unresolved possibly as a result of substitution saturation at deeper phylogenetic nodes. The objective of the current study was to improve rhodymenialean systematics by increasing taxonomic representation and using a more robust multigene dataset of mitochondrial (COB, COI/COI‐5P), nuclear (LSU, EF2) and plastid markers (psbA, rbcL). Additionally, we aimed to prevent phylogenetic inference problems associated with substitution saturation (particularly at the interfamilial nodes) by removing fast‐evolving sites and analyzing a series of progressively more conservative alignments. The Rhodymeniales was resolved as two major lineages: (i) the Fryeellaceae as sister to the Faucheaceae and Lomentariaceae; and (ii) the Rhodymeniaceae allied to the Champiaceae and Hymenocladiaceae. Support at the interfamilial nodes was highest when 20% of variable sites were removed. Inclusion of Binghamiopsis, Chamaebotrys, and Minium, which were absent in previous phylogenetic investigations, established their phylogenetic affinities while assessment of two genera consistently polyphyletic in phylogenetic analyses, Erythrymenia and Lomentaria, resulted in the proposition of the novel genera Perbella and Fushitsunagia. The taxonomic position of Drouetia was reinvestigated with re‐examination of holotype material of D. coalescens to clarify tetrasporangial development in this genus. In addition, we added three novel Australian species to Drouetia as a result of ongoing DNA barcoding assessments—D. aggregata sp. nov., D. scutellata sp. nov., and D. viridescens sp. nov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号