首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Arabidopsis arc1 (accumulation and replication of chloroplasts 1) mutant has pale seedlings and smaller, more numerous chloroplasts than the wild type. Previous work has suggested that arc1 affects the timing of chloroplast division but does not function directly in the division process. We isolated ARC1 by map‐based cloning and discovered it encodes FtsHi1 (At4g23940), one of several FtsHi proteins in Arabidopsis. These poorly studied proteins resemble FtsH metalloproteases important for organelle biogenesis and protein quality control but are presumed to be proteolytically inactive. FtsHi1 bears a predicted chloroplast transit peptide and localizes to the chloroplast envelope membrane. Phenotypic studies showed that arc1 (hereafter ftsHi1‐1), which bears a missense mutation, is a weak allele of FtsHi1 that disrupts thylakoid development and reduces de‐etiolation efficiency in seedlings, suggesting that FtsHi1 is important for chloroplast biogenesis. Consistent with this finding, transgenic plants suppressed for accumulation of an FtsHi1 fusion protein were often variegated. A strong T‐DNA insertion allele, ftsHi1‐2, caused embryo‐lethality, indicating that FtsHi1 is an essential gene product. A wild‐type FtsHi1 transgene rescued both the chloroplast division and pale phenotypes of ftsHi1‐1 and the embryo‐lethal phenotype of ftsHi1‐2. FtsHi1 overexpression produced a subtle increase in chloroplast size and decrease in chloroplast number in wild‐type plants while suppression led to increased numbers of small chloroplasts, providing new evidence that FtsHi1 negatively influences chloroplast division. Taken together, our analyses reveal that FtsHi1 functions in an essential, envelope‐associated process that may couple plastid development with division.  相似文献   

2.
Plants use sunlight as energy for photosynthesis; however, plant DNA is exposed to the harmful effects of ultraviolet‐B (UV‐B) radiation (280–320 nm) in the process. UV‐B radiation damages nuclear, chloroplast and mitochondrial DNA by the formation of cyclobutane pyrimidine dimers (CPDs), which are the primary UV‐B‐induced DNA lesions, and are a principal cause of UV‐B‐induced growth inhibition in plants. Repair of CPDs is therefore essential for plant survival while exposed to UV‐B‐containing sunlight. Nuclear repair of the UV‐B‐induced CPDs involves the photoreversal of CPDs, photoreactivation, which is mediated by CPD photolyase that monomerizes the CPDs in DNA by using the energy of near‐UV and visible light (300–500 nm). To date, the CPD repair processes in plant chloroplasts and mitochondria remain poorly understood. Here, we report the photoreactivation of CPDs in chloroplast and mitochondrial DNA in rice. Biochemical and subcellular localization analyses using rice strains with different levels of CPD photolyase activity and transgenic rice strains showed that full‐length CPD photolyase is encoded by a single gene, not a splice variant, and is expressed and targeted not only to nuclei but also to chloroplasts and mitochondria. The results indicate that rice may have evolved a CPD photolyase that functions in chloroplasts, mitochondria and nuclei, and that contains DNA to protect cells from the harmful effects of UV‐B radiation.  相似文献   

3.
Chloroplasts are photosynthetic organelles derived from endosymbiotic cyanobacteria during evolution. Dramatic changes occurred during the process of the formation and evolution of chloroplasts, including the large-scale gene transfer from chloroplast to nucleus. However, there are still many essential characters remaining. For the chloroplast division machinery, FtsZ proteins, Ftn2, SulA and part of the division site positioning system—MinD and MinE are still conserved. New or at least partially new proteins, such as FtsZ family proteins FtsZ1 and ARC3, ARC6H, ARC5, PDV1, PDV2 and MCD1, were introduced for the division of chloroplasts during evolution. Some bacterial cell division proteins, such as FtsA, MreB, Ftn6, FtsW and FtsI, probably lost their function or were gradually lost. Thus, the chloroplast division machinery is a dynamically evolving structure with both conservation and innovation.  相似文献   

4.
ARC (accumulation and replication of chloroplasts) genes control different aspects of the chloroplast division process in higher plants. In order to establish the hierarchy of the ARC genes in the chloroplast division process and to provide evidence for their specific roles, double mutants were constructed between arc11, arc6, arc5, arc3 and arc1 in all combinations and phenotypically analysed. arc11 is a new nuclear recessive mutant with 29 chloroplasts compared with 120 in wild type. All the phenotypes of the double mutants are unambiguous. ARC1 down-regulates proplastid division but is on a separate pathway from ARC3, ARC5, ARC6 and ARC11. ARC6 initiates both proplastid and chloroplast division. ARC3 controls the rate of chloroplast expansion and ARC11 the central positioning of the final division plane in chloroplast division. ARC5 facilitates separation of the two daughter chloroplasts. ARC5 maps to chromosome 3 and ARC11 and ARC6 map approximately 60 cM apart on chromosome 5.  相似文献   

5.
Chloroplasts are photosynthetic organelles derived from endosymbiotic cyanobacteria during evolution.Dramatic changes occurred during the process of the formation and evolution of chloroplasts,including the large-scale gene transfer from chloroplast to nucleus.However,there are still many essential characters remaining.For the chloroplast division machinery,FtsZ proteins,Ftn2,SulA and part of the division site positioning system- MinD and MinE are still conserved.New or at least partially new proteins,such as FtsZ family proteins FtsZl and ARC3,ARC6H,ARC5,PDV1,PDV2 and MCD1,were introduced for the division of chloroplasts during evolution.Some bacterial cell division proteins,such as FtsA,MreB,Ftn6,FtsW and Ftsl,probably lost their function or were gradually lost.Thus,the chloroplast division machinery is a dynamically evolving structure with both conservation and innovation.  相似文献   

6.
arc5 is a chloroplast division mutant of Arabidopsis thaliana. To identify the role of ARC5 in the chloroplast replication process we have followed the changes in arc5 chloroplasts during their perturbed division. ARC5 does not affect proplastid division but functions at a later stage in chloroplast development. Chloroplasts in developing mesophyll cells of arc5 leaves do not increase in number and all of the chloroplasts in mature leaf cells show a central constriction. Young arc5 chloroplasts are capable of initiating the division process but fail to complete daughter-plastid separation. Wild-type plastids increase in number to a mean of 121 after completing the division process, but in the mutant arc5 the approximately 13 plastids per cell are still centrally constricted but much enlarged. As the arc5 chloroplasts expand and elongate without dividing, the internal thylakoid membrane structure becomes flexed into an undulating ribbon. We conclude that the ARC5 gene is necessary for the completion of the last stage of chloroplast division when the narrow isthmus breaks, causing the separation of the daughter plastids.  相似文献   

7.
The higher plants of today array a large number of small chloroplasts in their photosynthetic cells. This array of small chloroplasts results from organelle division via prokaryotic binary fission in a eukaryotic plant cell environment. Functional abnormalities of the tightly coordinated biochemical event of chloroplast division lead to abnormal chloroplast development in plants. Here, we described an abnormal chloroplast phenotype in an ethylene insensitive ethylene response1-1 (etr1-1) of Arabidopsis thaliana. Extensive transgenic and genetic analyses revealed that this organelle abnormality was not linked to etr1-1 or ethylene signaling, but linked to a second mutation in ACCUMULATION AND REPLICATION3 (ARC3), which was further verified by genetic complementation analysis. Despite the normal expression of other plastid division-related genes, the loss of ARC3 caused the enlargement of chloroplasts as well as the diminution of a photosynthetic protein Rubisco in etr1-1. Our study has suggested that the increased size of the abnormal chloroplasts may not be able to fully compensate for the loss of a greater array of small chloroplasts in higher plants.  相似文献   

8.
Leaf chloroplast movement is thought to optimize light capture and to minimize photodamage. To better understand the impact of chloroplast movement on photosynthesis, we developed a technique based on the imaging of reflectance from leaf surfaces that enables continuous, high‐sensitivity, non‐invasive measurements of chloroplast movement in multiple intact plants under white actinic light. We validated the method by measuring photorelocation responses in Arabidopsis chloroplast division mutants with drastically enlarged chloroplasts, and in phototropin mutants with impaired photorelocation but normal chloroplast morphology, under different light regimes. Additionally, we expanded our platform to permit simultaneous image‐based measurements of chlorophyll fluorescence and chloroplast movement. We show that chloroplast division mutants with enlarged, less‐mobile chloroplasts exhibit greater photosystem II photodamage than is observed in the wild type, particularly under fluctuating high levels of light. Comparison between division mutants and the severe photorelocation mutant phot1‐5 phot2‐1 showed that these effects are not entirely attributable to diminished photorelocation responses, as previously hypothesized, implying that altered chloroplast morphology affects other photosynthetic processes. Our dual‐imaging platform also allowed us to develop a straightforward approach to correct non‐photochemical quenching (NPQ) calculations for interference from chloroplast movement. This correction method should be generally useful when fluorescence and reflectance are measured in the same experiments. The corrected data indicate that the energy‐dependent (qE) and photoinhibitory (qI) components of NPQ contribute differentially to the NPQ phenotypes of the chloroplast division and photorelocation mutants. This imaging technology thus provides a platform for analyzing the contributions of chloroplast movement, chloroplast morphology and other phenotypic attributes to the overall photosynthetic performance of higher plants.  相似文献   

9.
The arc3 (accumulation and replication of chloroplast) mutant of Arabidopsis thaliana has a small number of abnormally large chloroplasts in the cell, suggesting that chloroplast division is arrested in the mutant and ARC3 has an important role in the initiation of chloroplast division. To elucidate the role of ARC3, first we identified the ARC3 gene, and determined the location of ARC3 protein during chloroplast division because the localization and spatial orientation of such division factors are vital for correct chloroplast division. Sequencing analysis showed that ARC3 was a fusion of the prokaryotic FtsZ and part of the eukaryotic phosphatidylinositol-4-phosphate 5-kinase (PIP5K) genes. The PIP5K-homologous region of ARC3 had no catalytic domain but a membrane-occupation-and-recognition-nexus (MORN) repeat motif. Immunofluorescence microscopy, Western blotting analysis and in vitro chloroplast import and protease protection assays revealed that ARC3 protein was soluble, and located on the outer surface of the chloroplast in a ring-like structure at the early stage of chloroplast division. Prokaryotes have one FtsZ as a gene for division but have no ARC3 counterparts, the chimera of FtsZ and PIP5K, suggesting that the ARC3 gene might have been generated from FtsZ as another division factor during the evolution of chloroplast by endosymbiosis.  相似文献   

10.
The chloroplast division machinery is composed of numerous proteins that assemble as a large complex to divide double‐membraned chloroplasts through binary fission. A key mediator of division‐complex formation is ARC6, a chloroplast inner envelope protein and evolutionary descendant of the cyanobacterial cell division protein Ftn2. ARC6 connects stromal and cytosolic contractile rings across the two membranes through interaction with an outer envelope protein within the intermembrane space (IMS). The ARC6 IMS region bears a structurally uncharacterized domain of unknown function, DUF4101, that is highly conserved among ARC6 and Ftn2 proteins. Here we report the crystal structure of this domain from Arabidopsis thaliana ARC6. The domain forms an α/β barrel open towards the outer envelope membrane but closed towards the inner envelope membrane. These findings provide new clues into how ARC6 and its homologs contribute to chloroplast and cyanobacterial cell division.  相似文献   

11.
Chloroplasts were originally established in eukaryotes by the endosymbiosis of a cyanobacterium; they then spread through diversification of the eukaryotic hosts and subsequent engulfment of eukaryotic algae by previously nonphotosynthetic eukaryotes. The continuity of chloroplasts is maintained by division of preexisting chloroplasts. Like their ancestors, chloroplasts use a bacterial division system based on the FtsZ ring and some associated factors, all of which are now encoded in the host nuclear genome. The majority of bacterial division factors are absent from chloroplasts and several new factors have been added by the eukaryotic host. For example, the ftsZ gene has been duplicated and modified, plastid-dividing (PD) rings were most likely added by the eukaryotic host, and a member of the dynamin family of proteins evolved to regulate chloroplast division. The identification of several additional proteins involved in the division process, along with data from diverse lineages of organisms, our current knowledge of mitochondrial division, and the mining of genomic sequence data have enabled us to begin to understand the universality and evolution of the division system. The principal features of the chloroplast division system thus far identified are conserved across several lineages, including those with secondary chloroplasts, and may reflect primeval features of mitochondrial division. Shin-ya Miyagishima is the recipient of the Botanical Society Award for Young Scientists, 2004.  相似文献   

12.
Chloroplast biogenesis needs to be well coordinated with cell division and cell expansion during plant growth and development to achieve optimal photosynthesis rates. Previous studies showed that gibberellins (GAs) regulate many important plant developmental processes, including cell division and cell expansion. However, the relationship between chloroplast biogenesis with cell division and cell expansion, and how GA coordinately regulates these processes, remains poorly understood. In this study, we showed that chloroplast division was significantly reduced in the GA‐deficient mutants of Arabidopsis (ga1‐3) and Oryza sativa (d18‐AD), accompanied by the reduced expression of several chloroplast division‐related genes. However, the chloroplasts of both mutants exhibited increased grana stacking compared with their respective wild‐type plants, suggesting that there might be a compensation mechanism linking chloroplast division and grana stacking. A time‐course analysis showed that cell expansion‐related genes tended to be upregulated earlier and more significantly than the genes related to chloroplast division and cell division in GA‐treated ga1‐3 leaves, suggesting the possibility that GA may promote chloroplast division indirectly through impacting leaf mesophyll cell expansion. Furthermore, our cellular and molecular analysis of the GA‐response signaling mutants suggest that RGA and GAI are the major repressors regulating GA‐induced chloroplast division, but other DELLA proteins (RGL1, RGL2 and RGL3) also play a role in repressing chloroplast division in Arabidopsis. Taken together, our data show that GA plays a critical role in controlling and coordinating cell division, cell expansion and chloroplast biogenesis through influencing the DELLA protein family in both dicot and monocot plant species.  相似文献   

13.
H. Hashimoto 《Protoplasma》1992,167(1-2):88-96
Summary Studies have been made of whether actin filaments and microtubules are involved in the chloroplast division ofClosterium ehrenbergii (Conjugatae). Fluorostaining with rhodamine-phalloidin showed 5 types of localization of F-actin: (1) cables of actin filaments running in the cortical cytoplasm along the cell's long axis, (2) condensed actin filaments at the septum, (3) perinuclear distribution of actin filaments, (4) F-actins in a marking pin-like configuration adjacent to the nucleus of semicells just before completion of chloroplast kinesis, and (5) actin filaments girdling the isthmus of the constricted and dividing chloroplasts. Cytochalasin D (CD) at a concentration of 6 to 25 M caused significant disruption of actin filaments and the arrest of chloroplast kinesis, nuclear division, septum formation and cytoplasmic streaming within 3 to 6h. Chloroplast kinesis and cytoplasmic streaming recovered when cells were transferred to the medium without CD after CD treatment, or were subjected to prolonged contact with CD for more than 9h. In these cells there was a coincidental reappearance of actin filaments. A tubulin inhibitor, amiprophos-methyl at 330 M, did not inhibit chloroplast kinesis but did inhibit division and positioning of the nucleus. These results suggest that actin filaments do play a role in the mechanism of chloroplast kinesis but that microtubules do not appear to be involved in the process.Abbreviations APM amiprophos-methyl - CD cytochalasin D - DAPI 4,6-diamidino-2-phenylindole - DIC Nomarski differential interference contrast - DMSO dimethyl sulfoxide - Rh-Ph rhodamine-phalloidin  相似文献   

14.
V. Zachleder  S. Kawano  T. Kuroiwa 《Protoplasma》1996,192(3-4):228-234
Summary FdUrd (5-fluorodeoxyuridine), a specific inhibitor of thymidylate synthase, was used to study the relationship between reproductive processes in chloroplast and nucleocytoplasmic compartments of the chlorococcal algaScenedesmus quadricauda. The courses of DNA replication and nuclear division in both the compartments were followed in populations synchronised by the alternation of light and dark periods. DAPI-staining of DNA-containing structures was used for their visualisation and quantification. In contrast with cellular reproductive events, those in chloroplasts were not substantially affected by the presence of FdUrd (25 g/ml). It was shown that FdUrd specifically blocked nucDNA replication but not ptDNA replication. Thus, cells which had attained commitment to ptDNA replication, fission of pt-nuclei and chloroplast kinesis triggered and terminated these processes while the corresponding cellular processes were blocked. The courses of reproductive processes in chloroplasts were also substantially unaffected in cells grown in the presence of FdUrd for the whole cell cycle. This provided evidence that attainment of commitment to and termination of the entire sequence of reproductive events, including chloroplast fission, were controlled by different mechanisms than the reproductive processes in the nucleocytoplasmic compartment.Abbreviations DAPI 4,6-diamidino-2-phenylindole - ptDNA DNA of chloroplast nuclei - nucDNA DNA in cell nuclei - FdUrd 5-fluorodeoxyuridine  相似文献   

15.
Some taxa of brown algae have a so‐called ‘stellate’ chloroplast arrangement composed of multiple chloroplasts arranged in a stellate configuration, or else a single chloroplast with radiating lobes. The fine structures of chloroplasts and pyrenoids have been studied, but the details of their membrane configurations as well as pyrenoid ontogeny have not been well understood. The ultrastructure of the single stellate chloroplast in Splachnidium rugosum and Scytothamnus australis were re‐examined in the present study, as well as the stellate arrangement of chloroplasts in Asteronema ferruginea and Asterocladon interjectum, using freeze‐substitution fixation. It was confirmed that the chloroplast envelope invaginated into the pyrenoid in Splachnidium rugosum, Scytothamnus australis and Asteronema ferruginea, but chloroplast endoplasmic reticulum (CER) remained on the surface of the chloroplast. The space between the invaginated chloroplast envelope and CER was filled with electron‐dense material. In Asteronema ferruginea, CER surrounding each pyrenoid was closely appressed to the neighboring CER over the pyrenoids, so that the chloroplasts formed a stellate configuration; however, in the apical cells chloroplasts formed two or more loose groups, or were completely dispersed. The pyrenoids of Asterocladon interjectum did not have any invagination of the chloroplast envelope, but a unique membranous sac surrounded the pyrenoid complex and occasionally other organelles (e.g. mitochondria). Immunolocalization of β‐1,3‐glucans showed that the membranous sac in Asterocladon interjectum did not contain photosynthetic products such as chrysolaminaran. Observations in the dividing cells of Splachnidium rugosum and Scytothamnus australis indicated that the pyrenoid in the center of the chloroplast enlarged and divided into two before or during chloroplast division.  相似文献   

16.
During plastid division, the dynamin-related protein ACCUMULATION AND REPLICATION OF CHLOROPLASTS5 (ARC5) is recruited from the cytosol to the surface of the outer chloroplast envelope membrane. In Arabidopsis thaliana arc5 mutants, chloroplasts arrest during division site constriction. Analysis of mutants similar to arc5 along with map-based cloning identified PLASTID DIVISION1 (PDV1), an integral outer envelope membrane protein, and its homolog PDV2 as components of the plastid division machinery. Similar to ARC5, PDV1 localized to a discontinuous ring at the division site in wild-type plants. The midplastid PDV1 ring formed in arc5 mutants and the ARC5 ring formed in pdv1 and pdv2 mutants, but not in pdv1 pdv2. Stromal FtsZ ring assembly occurred in pdv1, pdv2, and pdv1 pdv2, as it does in arc5. Topological analysis showed that the large N-terminal region of PDV1 upstream of the transmembrane helix bearing a putative coiled-coil domain is exposed to the cytosol. Mutation of the conserved PDV1 C-terminal Gly residue did not block PDV1 insertion into the outer envelope membrane but did abolish its localization to the division site. Our results indicate that plastid division involves the stepwise localization of FtsZ, PDV1, and ARC5 at the division site and that PDV1 and PDV2 together mediate the recruitment of ARC5 to the midplastid constriction at a late stage of division.  相似文献   

17.
Chloroplasts arose from a cyanobacterial endosymbiont and multiply by division, reminiscent of their free-living ancestor. However, chloroplasts can not divide by themselves, and the division is performed and controlled by proteins that are encoded by the host nucleus. The continuity of chloroplasts was originally established by synchronization of endosymbiotic cell division with host cell division, as seen in existent algae. In contrast, land plant cells contain multiple chloroplasts, the division of which is not synchronized, even in the same cell. Land plants have evolved cell and chloroplast differentiation systems in which the size and number of chloroplasts (or other types of plastids) change along with their respective cellular function by changes in the division rate. We recently reported that PLASTID DIVISION (PDV) proteins, land-plant specific components of the chloroplast division apparatus, determined the rate of chloroplast division. The level of PDV protein is regulated by the cell differentiation program based on cytokinin, and the increase or decrease of the PDV level gives rise to an increase or decrease in the chloroplast division rate. Thus, the integration of PDV proteins into the chloroplast division machinery enabled land plant cells to change chloroplast size and number in accord with the fate of cell differentiation.Key words: chloroplast division, cell cycle, cell differentiation, cytokinin, endosymbiosis, evolution  相似文献   

18.
Replication of chloroplasts is essential for achieving and maintaining optimal plastid numbers in plant cells. The plastid division machinery contains components of both endosymbiotic and host cell origin, but little is known about the regulation and molecular mechanisms that govern the division process. The Arabidopsis mutant arc6 is defective in plastid division, and its leaf mesophyll cells contain only one or two grossly enlarged chloroplasts. We show here that arc6 chloroplasts also exhibit abnormal localization of the key plastid division proteins FtsZ1 and FtsZ2. Whereas in wild-type plants, the FtsZ proteins assemble into a ring at the plastid division site, chloroplasts in the arc6 mutant contain numerous short, disorganized FtsZ filament fragments. We identified the mutation in arc6 and show that the ARC6 gene encodes a chloroplast-targeted DnaJ-like protein localized to the plastid envelope membrane. An ARC6-green fluorescent protein fusion protein was localized to a ring at the center of the chloroplasts and rescued the chloroplast division defect in the arc6 mutant. The ARC6 gene product is related closely to Ftn2, a prokaryotic cell division protein unique to cyanobacteria. Based on the FtsZ filament morphology observed in the arc6 mutant and in plants that overexpress ARC6, we hypothesize that ARC6 functions in the assembly and/or stabilization of the plastid-dividing FtsZ ring. We also analyzed FtsZ localization patterns in transgenic plants in which plastid division was blocked by altered expression of the division site-determining factor AtMinD. Our results indicate that MinD and ARC6 act in opposite directions: ARC6 promotes and MinD inhibits FtsZ filament formation in the chloroplast.  相似文献   

19.
Light and chloroplast function is known to affect the plant immune response; however, the underlying mechanism remains elusive. We previously demonstrated that two light signaling factors, FAR‐RED ELONGATED HYPOCOTYL 3 (FHY3) and FAR‐RED IMPAIRED RESPONSE 1 (FAR1), regulate chlorophyll biosynthesis and seedling growth via controlling HEMB1 expression in Arabidopsis thaliana. In this study, we reveal that FHY3 and FAR1 are involved in modulating plant immunity. We showed that the fhy3 far1 double null mutant displayed high levels of reactive oxygen species and salicylic acid (SA) and increased resistance to Pseudomonas syringae pathogen infection. Microarray analysis revealed that a large proportion of pathogen‐related genes, particularly genes encoding nucleotide‐binding and leucine‐rich repeat domain resistant proteins, are highly induced in fhy3 far1. Genetic studies indicated that the defects of fhy3 far1 can be largely rescued by reducing SA signaling or blocking SA accumulation, and by overexpression of HEMB1, which encodes a 5‐aminolevulinic acid dehydratase in the chlorophyll biosynthetic pathway. Furthermore, we found that transgenic plants with reduced expression of HEMB1 exhibit a phenotype similar to fhy3 far1. Taken together, this study demonstrates an important role of FHY3 and FAR1 in regulating plant immunity, through integrating chlorophyll biosynthesis and the SA signaling pathway.  相似文献   

20.
Chloroplast division in plant cells is accomplished through the coordinated action of the tubulin-like FtsZ ring inside the organelle and the dynamin-like ARC5 ring outside the organelle. This coordination is facilitated by ARC6, an inner envelope protein required for both assembly of FtsZ and recruitment of ARC5. Recently, we showed that ARC6 specifies the mid-plastid positioning of the outer envelope proteins PDV1 and PDV2, which have parallel functions in dynamin recruitment. PDV2 positioning involves direct ARC6–PDV2 interaction, but PDV1 and ARC6 do not interact indicating that an additional factor functions downstream of ARC6 to position PDV1. Here, we show that PARC6 (paralog of ARC6), an ARC6-like protein unique to vascular plants, fulfills this role. Like ARC6, PARC6 is an inner envelope protein with its N-terminus exposed to the stroma and Arabidopsis parc6 mutants exhibit defects of chloroplast and FtsZ filament morphology. However, whereas ARC6 promotes FtsZ assembly, PARC6 appears to inhibit FtsZ assembly, suggesting that ARC6 and PARC6 function as antagonistic regulators of FtsZ dynamics. The FtsZ inhibitory activity of PARC6 may involve its interaction with the FtsZ-positioning factor ARC3. A PARC6–GFP fusion protein localizes both to the mid-plastid and to a single spot at one pole, reminiscent of the localization of ARC3, PDV1 and ARC5. Although PARC6 localizes PDV1, it is not required for PDV2 localization or ARC5 recruitment. Our findings indicate that PARC6, like ARC6, plays a role in coordinating the internal and external components of the chloroplast division complex, but that PARC6 has evolved distinct functions in the division process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号