首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eu2+‐activated SrMg2Al16O27 novel phosphor was synthesized by a combustion method (550°C furnace). The prepared phosphor was first characterized by X‐ray diffraction (XRD) for confirmation of phase purity. SEM analysis showed the morphology of the phosphor. The photoluminescence characteristics showed broad‐band excitation at 324 nm, which was monitored at 465 nm emission wavelength. The SrMg2Al16O27:Eu2+ phosphor shows broad blue emission centred at 465 nm, emitting a blue light corresponding to 4f65d1 → 4f7 transition. Here we report the photoluminescence characteristics of the prepared phosphor and compare it with commercial BAM:Eu2+ phosphor. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Rare‐earth ions play an important role in eco‐friendly solid‐state lighting for the lighting industry. In the present study we were interested in Eu3+ ion‐doped inorganic phosphors for near ultraviolet (UV) excited light‐emitting diode (LED) applications. Eu3+ ion‐activated SrYAl3O7 phosphors were prepared using a solution combustion route at 550°C. Photoluminescence characterization of SrYAl3O7:Eu3+ phosphors showed a 612 nm emission peak in the red region of the spectrum due to the 5D07F2 transition of Eu3+ ions under excitation at 395 nm in the near‐UV region and at the 466 nm blue excitation wavelength. These red and blue emissions are supported for white light generation for LED lighting. Structure, bonding between each element of the sample and morphology of the sample were analysed using X‐ray diffraction (XRD) and scanning electron microscopy (SEM), which showed that the samples were crystallized in a well known structure. The phosphor was irradiated with a 60Co‐γ (gamma) source at a dose rate of 7.2 kGy/h. Thermoluminescence (TL) studies of these Eu3+‐doped SrYAl3O7 phosphors were performed using a Nucleonix TL 1009I TL reader. Trapping parameters of this phosphor such as activation energy (E), order of kinetics (b) and frequency factor (s) were calculated using Chen's peak shape method, the initial rise method and Ilich's method.  相似文献   

3.
This article reports a novel blue emission in a series of Ca12Al10.6Si3.4O32Cl5.4:Ce3+ phosphor under excitation in the near‐UV wavelength range. This phosphor was prepared using the combustion method. Here, the Ce3+ emission band is observed over a broad range of 380–550 nm, under 365 nm excitation, and is due to 5d–4f transition. The effect of a Li+ charge compensator on the emission properties of the phosphor was also investigated for the first time. X‐Ray diffraction confirmed the phase purity of the synthesized phosphor. The surface morphology and elemental composition of the phosphor were studied using scanning electron microscopy and energy‐dispersive X‐ray spectroscopy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
A series of Sr2P2O7:Dy3+, Sr2P2O7:Ce3+ and Sr2P2O7:Dy3+,Ce3+ phosphors was synthesized via the one‐step calcination process for the precursors prepared by co‐precipitation methods. The phases, morphology, quantum efficiency and photoluminescence properties of the obtained phosphors were characterized systematically. These results show that the near‐spherical particles prepared through calcining the precursors by means of ammonium dibasic phosphate co‐precipitation (method 3) have the smallest particle size and strongest emission intensity among the three methods in the paper. With Dy3+ concentration increasing in Sr2P2O7:Dy3+ phosphors, the luminescence intensity first increases, reaches maximum, and then decreases. A similar trend was followed by Sr2P2O7:Ce3+ with Ce3+concentration increasing. A successful attempt was made to initiate the energy transfer mechanism from Ce3+ to Dy3+ in the host lattice and an overlap between the emission band of Ce3+ and the excitation band of Dy3+ indicated that the Ce3+ → Dy3+ energy transfer may indeed exist. It is clear that the photoluminescence intensity of Dy3+ as well as the quantum efficiency of the phosphor can be enhanced markedly by co‐doping Ce3+. Sr2P2O7:Dy3+,Ce3+ has its (CIE) chromaticity coordinates in the bluish‐white‐light region, near the standard illuminant D65. The CIE 1913 chromaticity coordinates of Sr2P2O7:Dy3+ phosphors fall in the white‐light region, and are adjacent to the ideal white‐light coordinates. In addition, the colour temperature and colour tone of Sr2P2O7:Dy3+ could be adjusted by changing the relative concentration of Dy3+. In short, Sr2P2O7:Dy3+ can be a promising single‐phased white‐light emitting phosphor for near‐UV (NUV) w‐LEDs.  相似文献   

5.
A blue‐emitting phosphor Ca12Al14O32F2:Eu2+ was synthesized using a high‐temperature solid‐state reaction under a reductive atmosphere. The X‐ray diffraction measurements indicate that a pure phase Ca12Al14O32F2:Eu2+ can be obtained for low doping concentration of Eu2+. The phosphor has a strong absorption in the range 270–420 nm with a maximum at ~340 nm and blue emission in the range 400–500 nm with chromatic coordination of (0.152, 0.045). The optimal doping concentration is ~0.24. In addition, the luminescence properties of the as‐synthesized phosphor were evaluated by comparison with those of Ca12Al14O32Cl2:Eu2+ and the commercially available phosphor BaMgAl10O17:Eu2+. The emission intensity of Ca12Al14O32F2:Eu2+ was ~72% that of BaMgAl10O17:Eu2+ under excitation at λ = 375 nm. The results indicate that Ca12Al14O32F2:Eu2+ has potential application as a near‐UV‐convertible blue phosphor for white light‐emitting diodes.  相似文献   

6.
An intense green photostimulated luminescence in BaAl2O4:Eu2+ phosphor was prepared. The thermoluminescence results indicate that there are at least three types of traps (T1, T2, T3) with different trap depths in BaAl2O4:Eu2+ phosphor according to the bands located at 327, 361 and 555 K, respectively, which are closely associated with the phosphor's long persistent luminescence and photostimulated luminescence properties. In addition, as a novel optical read‐out form, a photostimulated persistent luminescence signal can be repeatedly obtained in BaAl2O4:Eu2+ phosphor. This shows that re‐trapping of the electron released from a deep trap plays an important role in photostimulated persistent luminescence. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
In this work, we report the preparation, characterization, comparison and luminescence mechanisms of Eu2+‐doped and Eu2+,Dy3+‐co‐doped Ba2MgSi2O7 (BMSO) phosphors. Prepared phosphors were synthesized via a high temperature solid‐state reaction method. All prepared phosphors appeared white. The phase structure, particle size, and elemental analysis were analyzed using X‐ray diffraction (XRD), transmission electron microscopy (TEM) and energy‐dispersive X‐ray (EDX) analysis. The luminescence properties of the phosphors were investigated by thermoluminescence (TL) and photoluminescence (PL). The PL excitation and emission spectra of Ba2MgSi2O7:Eu2+ showed the peak to be around 381 nm and 490 nm respectively. The PL excitation spectrum of Ba2MgSi2O7:Eu2+Dy3+ showed the peak to be around 341 nm and 388 nm, and the emission spectrum had a broad band around 488 nm. These emissions originated from the 4f6 5d1 to 4f7 transition of Eu2+. TL analysis revealed that the maximum TL intensity was found at 5 mol% of Eu2+ doping in Ba2MgSi2O7 phosphors after 15 min of ultraviolet (UV) light exposure. TL intensity was increased when Dy3+ ions were co‐doped in Ba2MgSi2O7:Eu2+ and maximum TL intensity was observed for 2 mol% of Dy3+. TL emission spectra of Ba1.95MgSi2O7:0.05Eu2+ and Ba1.93MgSi2O7:0.05Eu2+,0.02Dy3+ phosphors were found at 500 nm. TL intensity increased with UV exposure time up to 15 min, then decreased for the higher UV radiation dose for both Eu doping and Eu,Dy co‐doping. The trap depths were calculated to be 0.54 eV for Ba1.95MgSi2O7:0.05Eu2+ and 0.54 eV and 0.75 eV for Ba1.93MgSi2O7:0.05Eu2+,0.02Dy3+ phosphors. It was observed that co‐doping with small amounts of Dy3+ enhanced the thermoluminescence properties of Ba2MgSi2O7 phosphor. Copyright © 2016 John Wiley & Sons, Ltd. [Correction added on 5 April 2016, after first online publication: The following parts of the abstract have been edited for consistency. '4f65d1' has been corrected to '4f6 5d1', '4f7' has been corrected to '4f7', 'Ba1.95' has been corrected to 'Ba1.95' and 'Ba1.93' has been corrected to 'Ba1.93' respectively.]  相似文献   

8.
The MgO–Ga2O3–SiO2 glasses and glass‐ceramics samples doped with Eu2+/Mn2+/Er3+ and heated in reductive atmosphere were prepared by the sol–gel method. The structure, morphology and the luminescence properties were studied using X‐ray diffraction, high‐resolution transmission electron microscope, fluorescence spectra, and up‐conversion emission. The luminescence characteristics of doped ions could be influenced by temperature and matrix component. The characteristic emission of Mn2+, Eu2+ and Er3+ were seen and the energy transfer efficiency from Eu2+ to Mn2+ was enhanced as Mn2+ concentration was increased. In addition, the two‐photon process was determined for the Er3+‐doped samples.  相似文献   

9.
Di‐barium magnesium silicate phosphor doped with Eu2+ and Dy3+ was prepared using a solid‐state reaction technique under a reducing atmosphere. The sample underwent impulsive deformation by impact from a piston for mechanoluminescence (ML) investigations. The temporal ML characteristics of the phosphor were observed, which expressed a single sharp peak with a long decaying period. To investigate the luminescence centre responsible for the ML peak, the ML spectrum of the phosphor was also observed. The recorded ML spectrum was similar in shape and peak wavelength to the photoluminescence (PL) spectrum, which verifies the existence of a single emission centre due to the transition of Eu2+ ions, i.e. transitions from any of the sublevels of the 4f65d1 configuration to the 8S7/2 level of the 4f7 configuration. Decay rates for different impact velocities were also calculated using curve‐fitting techniques. The time of the ML peak and the rate of decay did not change significantly with respect to increasing impact velocity of the load and peak ML intensity varied linearly. The mechanism of the ML emission was also discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
In this work, we studied the luminescence properties of Tb3+‐doped MgPbAl10O17 green phosphor. To understand the excitation mechanism and corresponding emission of the prepared phosphor, its structural, morphological and photoluminescence properties were investigated. In general, for green emission, Tb3 is used as an activator and the obtained excitation and emission spectra indicated that this phosphor can be effectively excited by a wavelength of 380 nm, and exhibits bright green emission centered at 545 nm corresponding to the f → f transition of trivalent terbium ions. The chromaticity coordinates were (Cx = 0.263, Cy = 0.723). The impact of Tb3+ concentration on the relative emission intensity was investigated, and the best doping concentration was found to be 2 mol%. This study suggests that Tb3+‐doped MgPbAl10O17 phosphor is a strong candidate for a green component in phosphor‐converted white light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Ca3SiO4Cl2 co‐doped with Ce3+,Eu2+ was prepared by high temperature reaction. The structure, luminescent properties and the energy transfer process of Ca3SiO4Cl2: Ce3+,Eu2+ were investigated. Eu2+ ions can give enhanced green emission through Ce3+ → Eu2+ energy transfer in these phosphors. The green phosphor Ca2.9775SiO4Cl2:0.0045Ce3+,0.018Eu2+ showed intense green emission with broader excitation in the near‐ultraviolet light range. A green light‐emitting diode (LED) based on this phosphor was made, and bright green light from this green LED could be observed by the naked eye under 20 mA current excitation. Hence it is considered to be a good candidate for the green component of a three‐band white LED. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
A novel phosphor LiBaPO4 doped with rare earths Eu and Dy prepared by high temperature solid‐state reaction method is reported. The phosphors were characterized by X‐ray powder diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL). The emission and excitation spectra of these materials were measured at room temperature with a spectrofluorophotometer. The excitation spectra of LiBaPO4:Eu3+ phosphor can be efficiently excited by 394 nm, which is matched well with the emission wavelength of near‐UV light‐emitting diode (LED) chip. PL properties of Eu3+‐doped LiBaPO4 exhibited the characteristic red emission coming from 5D07 F1 (593 nm) and 5D07 F2 (617 nm) electronic transitions with color co‐ordinations of (0.680, 0.315). The results demonstrated that LiBaPO4:Eu3+ is a potential red‐emitting phosphor for near‐UV LEDs. Emission spectra of LiBaPO4:Dy3+ phosphors showed efficient blue (481 nm) and yellow (574 nm) bands, which originated from 4 F9/26H15/2 and 4 F9/26H13/2 transitions of the Dy3+ ion, respectively. The 574 nm line is more intense than the 481 nm lines, which indicates that the site Dy3+ is located with low symmetry. This article summarizes fundamentals and possible applications of optically useful inorganic phosphates with visible photoluminescence of Eu3+ and Dy3+ ions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Samples of the Ba9(Lu2‐xYx)Si6O24:Ce3+ (x = 0–2) blue‐green phosphors were synthesized by solid‐state reactions. All the samples exhibited a rhombohedral crystal structure. As the Y3+ concentration increased, the diffraction peaks shifted to the small angle region and the lattice parameters increased due to the larger ionic radius of Y3+ (r = 0.900 Å) compared with that of Lu3+ (r = 0.861 Å). Under 400 nm excitation, samples exhibited strong blue‐green emissions around 490 nm. The emission bands had a slight blue shift that resulted from weak crystal‐field splitting with increasing Y3+ concentration. Luminescence intensity and quantum efficiency (QE) decreased with increasing Y3+ concentration. The internal QE decreased from 74 to 50% and the external QE decreased from 50 to 34% as x increased from 0 to 2. The thermal stability of the Lu series was better than that of the Y‐series. The excitation band peak around 400 nm matched well with the emission light from the efficient near‐ultraviolet (NUV) chip. These results indicate promising applications for these NUV‐based white light‐emitting diodes.  相似文献   

14.
In this paper, we have reported the photoluminescence (PL) properties of the Ba2Mg(PO4)2:Eu3+ phosphor synthesized using a wet chemical method. The preliminary scanning electron microscopy (SEM) investigation of the sample revealed irregular surface morphology with particle sizes in the 10–50 μm range. The strongest PL excitation peak was observed at 396 nm. The emission spectra indicated that this phosphor can be effectively excited by the 396 nm wavelength. Upon 396 nm excitation, the emission spectrum showed characteristics peaks located at 592 nm and 615 nm. These intense orange‐red emission peaks were obtained due to f→f transitions of Eu3+ ions. The emission peak at 592 nm is referred to as the magnetic dipole 5D07F1 transition and the emission peak at 615 nm corresponded to the electric dipole 5D07F2 transition of Eu3+. The Commission Internationale de l’Eclairage (CIE) coordinates of the Ba2Mg(PO4)2:Eu3+ phosphor were found to be (0.586, 0.412) for wavelength 592 nm and (0.680, 0.319) for wavelength 615 nm situated at the edge of the CIE diagram, indicating high colour purity of phosphors. Due to the high emission intensity and a good excitation profile, Eu3+‐doped Ba2Mg(PO4)2 phosphor may be a promising orange‐red phosphor candidate for solid‐state lighting applications.  相似文献   

15.
The luminescent properties of europium (Eu)‐ and dysprosium (Dy)‐co‐doped K3Ca2(SO4)3Cl halosulfate phosphors were analyzed. This paper reports the photoluminescence (PL) properties of K3Ca2(SO4)3Cl microphosphor doped with Eu and Dy and synthesized using a cost‐effective wet chemical method. The phosphors were characterized by X‐ray diffraction and scanning electron microscopy. The CIE coordinates were calculated to display the color of the phosphor. PL emission of the prepared samples show peaks at 484 nm (blue), 575 nm (yellow), 594 nm (orange) and 617 nm (red). The emission color of the Eu,Dy‐co‐doped K3Ca2(SO4)3Cl halophosphor depends on the doping concentration and excitation wavelength. The addition of Eu in K3Ca2(SO4)3Cl:Dy greatly enhances the intensity of the blue and yellow peaks, which corresponds to the 4 F9/26H15/2 and 4 F9/26H13/2 transitions of Dy3+ ions (under 351 nm excitation). The Eu3+/Dy3+ co‐doping also produces white light emission for 1 mol% of Eu3+, 1 mol% of Dy3+ in the K3Ca2(SO4)3Cl lattice under 396 nm excitation, for which the calculated chromaticity coordinates are (0.35, 0.31). Thus, K3Ca2(SO4)3Cl co‐doped with Eu/Dy is a suitable candidate for NUV based white light‐emitting phosphors technology. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Near‐UV excited narrow line red‐emitting phosphors, Eu3+‐activated Y2MoO6 systems, were synthesized using a simple molten salt reaction. The structure and photoluminescence characteristics were investigated using X‐ray powder diffraction, UV–Vis absorption and fluorescent spectrophotometry. The excitation spectra show strong broad‐band absorptions in the near‐UV to blue light regions which match the radiation of near‐UV light‐emitting diode chips well. Under excitation of either near‐UV or blue light, intense red emission with a main peak of 611 nm is observed, ascribed to the 5D07F2 transition of Eu3+ ions; the optimal doping concentration is 20 mol%. The chromaticity coordinates (x = 0.65, y = 0.34) of the as‐obtained phosphor are very close to the National Television Standard Committee standard values (x = 0.67, y = 0.33). All these characteristics suggest that this material is a promising red‐emitting phosphor candidate for white‐LEDs based on near‐UV LED chips. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
A series of controllable emissions SrWO4:Eu3+ and charge‐compensated SrWO4: (m = 0.01 or 0.20) phosphors was successfully prepared via a simple co‐precipitation method. The energy transfer mechanism was studied based on the Huang's theory. A low magnitude of Huang‐Rhys factor (10?2) was calculated using phonon sideband spectra. The Judd–Ofelt parameters Ωλ (λ = 2, 4 and 6) of Eu3+‐activated SrWO4 doped with charge compensation were obtained. The calculated Commission Internationale de l'Eclairage chromaticity coordinates were found to be about (0.67, 0.33) for SrWO4: and charge‐compensated SrWO4: phosphors, which coincided with the National Television Standard Committee system standard values for red. A white light emission was obtained under 362 nm excitation. The correlated color temperature was computed by a simple equation to characterize light sources. Thus, warm white light‐emitting diodes with higher Ra can be constructed by combining as‐prepared high efficiency, low correlated color temperature and high color purity phosphor.  相似文献   

18.
Incorporating the Gd3+ rare earth ion in the LiCaBO3 host lattice resulted in narrow‐band UV‐B emission peaking at 315 nm, with excitation at 274 nm. The LiCaBO3:Gd3+ phosphor was synthesized via the solid‐state diffusion method. The structural, morphological and luminescence properties of this phosphor were characterized by X‐ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and photoluminescence (PL) spectroscopy. Electron paramagnetic resonance (EPR) characterization of the as‐prepared phosphors is also reported here. XRD studies confirmed the crystal formation and phase purity of the prepared phosphors. A series of different dopant concentrations was synthesized and the concentration‐quenching effect was studied. Critical energy transfer distance between activator ions was determined and the mechanism governing the concentration quenching is also reported in this paper. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The combustion procedure was used to synthesize La1.4Al22.6O36:Sm3+ phosphors. The X-ray diffraction (XRD) patterns and morphological and photoluminescence properties were investigated. The XRD patterns consisted of a hexagonal crystal structure. At 405 nm, the maximum excitation intensity was obtained. Following 405 nm excitation, three different emission peaks at 573, 604, and 651 nm were seen. Concentration quenching occurred at 1.5 mol% Sm3+ ions. The Commission Internationale de l'éclairage coordinates for the La1.4Al22.6O36 phosphor with Sm3+ doping were 604 nm (x = 0.644, y = 0.355) falling in the red region. The findings implied that the prepared phosphor may be used to develop w-light-emitting diodes.  相似文献   

20.
CaS:Ce3+ is an efficient green‐emitting (535 nm) phosphor, excitable with blue light (450–470 nm) and was synthesized via a solid‐state reaction method by heating under a reducing atmosphere. The luminescent properties, photoluminescent (PL) excitation and emission of the phosphor were analyzed by spectrofluorophotometry. The excitation and emission peaks of the CaS:Ce3+ phosphor lay in the visible region, which made them relevant for light‐emitting diode (LED) application for the generation of white light. Judd‐Oflet parameters were calculated and revealed that green light emitted upon blue illumination. The prepared phosphor had strong blue absorption at 470 nm and a broad green emission band range from 490–590 nm with the peak at 537 nm. The characteristics of the CaS:Ce3+ phosphor make it suitable for use as a wavelength tunable green emitting phosphor for three band white LEDs pumped by a blue LED (470 nm). The Commission International de l'Eclairage co‐ordinates were calculated by a spectrophotometric method using the spectral energy distribution (0.304, 0.526) and confirm the green emission. The potential application of this phosphor is as a phosphor‐converted white light‐emitting diode. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号