首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work presents a comprehensive study of the fabrication and optimization of electrodeposited p‐ and n‐type thermoelectric films. The films are deposited on Au and stainless steel substrates over a wide range of deposition potentials. The influence of the preparative parameters such as the composition of the electrolyte bath and the deposition potential are investigated. Furthermore, the p‐doped (BixSb1‐x)2Te3 and the n‐doped Bi2(TexSe1‐x)3 films are annealed for a period of about 1 h under helium and under tellurium atmosphere at 250 °C for 60h. Annealing in He already leads to significant improvements in the thermoelectric performance. Furthermore, due to the equilibrium conditions during the process, annealing in Te atmosphere leads to a strongly improved film composition, charge carrier density and mobility. The Seebeck coefficients increase to values up to +182 μV K?1 for p‐doped and–130 μV K?1 for n‐doped materials at room temperature. The power factors also exhibit improvements with 1320 μW m?1 K?2 and 820 μW m?1 K?2 for p‐doped and n‐doped films, respectively. Additionally, in‐situ XRD measurements performed during annealing of the films up to 600K under He atmosphere show stepwise improvements of the crystal structure leading to the improvements in thermoelectric parameters. The thermal conductivity is between 1.2 W m?1 K?1 and 1.0 W m?1 K?1.  相似文献   

2.
Colloidal quantum dots (CQDs) are demonstrated to be promising materials to realize high‐performance thermoelectrics owing to their low thermal conductivity. The most studied CQD films, however, are using long ligands that require high processing and operation temperature (>400 °C) to achieve optimum thermoelectric performance. Here the thermoelectric properties of CQD films cross‐linked using short ligands that allow strong inter‐QD coupling are reported. Using the ligands, p‐type thermoelectric solids are demonstrated with a high Seebeck coefficient and power factor of 400 μV K?1 and 30 µW m?1 K?2, respectively, leading to maximum ZT of 0.02 at a lower measurement temperature (<400 K) and lower processing temperature (<300 °C). These ligands further reduce the annealing temperature to 175 °C, significantly increasing the Seebeck coefficient of the CQD films to 580 μV K?1. This high Seebeck coefficient with a superior ZT near room temperature compared to previously reported high temperature‐annealed CQD films is ascribed to the smaller grain size, which enables the retainment of quantum confinement and significantly increases the hole effective mass in the films. This study provides a pathway to approach quantum confinement for achieving a high Seebeck coefficient yet strong inter‐QD coupling, which offers a step toward low‐temperature‐processed high‐performance thermoelectric generators.  相似文献   

3.
Iron pyrite (cubic FeS2) is a promising candidate absorber material for earth‐abundant thin‐film solar cells. In this report, single‐phase, large‐grain, and uniform polycrystalline pyrite thin films are fabricated on glass and molybdenum‐coated glass substrates by atmospheric‐pressure chemical vapor deposition (AP‐CVD) using the reaction of iron(III) acetylacetonate and tert‐butyl disulfide in argon at 300 °C, followed by sulfur annealing at 500–550 °C to convert marcasite impurities to pyrite. The pyrite‐marcasite phase composition depends strongly on the concentration of sodium in the growth substrate and the sulfur partial pressure during annealing. Phase and elemental composition of the films are characterized by X‐ray diffraction, Raman spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, Rutherford backscattering spectrometry, and X‐ray photoelectron spectroscopy. The in‐plane electrical properties are surprisingly insensitive to phase and elemental impurities, with all films showing p‐type, thermally activated transport with a small activation energy (≈30 meV), a room‐ temperature resistivity of ≈1 Ω cm, and low mobility. These ubiquitous electrical properties may result from robust surface effects. These CVD pyrite thin films are well suited to fundamental electrical studies and the fabrication of pyrite photovoltaic device stacks.  相似文献   

4.
Nowadays, millimeter scale power sources are key devices for providing autonomy to smart, connected, and miniaturized sensors. However, until now, planar solid state microbatteries do not yet exhibit a sufficient surface energy density. In that context, architectured 3D microbatteries appear therefore to be a good solution to improve the material mass loading while keeping small the footprint area. Beside the design itself of the 3D microbaterry, one important technological barrier to address is the conformal deposition of thin films (lithiated or not) on 3D structures. For that purpose, atomic layer deposition (ALD) technology is a powerful technique that enables conformal coatings of thin film on complex substrate. An original, robust, and highly efficient 3D scaffold is proposed to significantly improve the geometrical surface of miniaturized 3D microbattery. Four functional layers composing the 3D lithium ion microbattery stacking has been successfully deposited on simple and double microtubes 3D templates. In depth synchrotron X‐ray nanotomography and high angle annular dark field transmission electron microscope analyses are used to study the interface between each layer. For the first time, using ALD, anatase TiO2 negative electrode is coated on 3D tubes with Li3PO4 lithium phosphate as electrolyte, opening the way to all solid‐state 3D microbatteries. The surface capacity is significantly increased by the proposed topology (high area enlargement factor – “thick” 3D layer), from 3.5 μA h cm?2 for a planar layer up to 0.37 mA h cm?2 for a 3D thin film (105 times higher).  相似文献   

5.
Colloidal quantum dots (CQDs) are attractive materials for thermoelectric applications due to their simple and low‐cost processing; advantageously, they also offer low thermal conductivity and high Seebeck coefficient. To date, the majority of CQD thermoelectric films reported upon have been p‐type, while only a few reports are available on n‐type films. High‐performing n‐ and p‐type films are essential for thermoelectric generators (TEGs) with large output voltage and power. Here, high‐thermoelectric‐performance n‐type CQD films are reported and showcased in high‐performance all‐CQD TEGs. By engineering the electronic coupling in the films, a thorough removal of insulating ligands is achieved and this is combined with excellent surface trap passivation. This enables a high thermoelectric power factor of 24 µW m?1 K?2, superior to previously reported n‐type lead chalcogenide CQD films operating near room temperature (<1 µW m?1 K?2). As a result, an all‐CQD film TEG with a large output voltage of 0.25 V and a power density of 0.63 W m?2 at ?T = 50 K is demonstrated, which represents an over fourfold enhancement to previously reported p‐type only CQD TEGs.  相似文献   

6.
In an effort to create a paintable/printable thermoelectric material, comprised exclusively of organic components, polyaniline (PANi), graphene, and double‐walled nanotube (DWNT) are alternately deposited from aqueous solutions using the layer‐by‐layer assembly technique. Graphene and DWNT are stabilized with an intrinsically conductive polymer, poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). An 80 quadlayer thin film (≈1 μm thick), comprised of a PANi/graphene‐PEDOT:PSS/PANi/DWNT‐PEDOT:PSS repeating sequence, exhibits unprecedented electrical conductivity (σ ≈ 1.9 × 105 S m?1) and Seebeck coefficient (S ≈ 120 μV K?1) for a completely organic material. These two values yield a thermoelectric power factor (PF = S 2 σ ?1) of 2710 μW m?1 K?2, which is the highest value ever reported for a completely organic material and among the highest for any material measured at room temperature. These outstanding properties are attributed to the highly ordered structure in the multilayer assembly. This water‐based thermoelectric nanocomposite is competitive with the best inorganic semiconductors (e.g., bismuth telluride) at room temperature and can be applied as a coating to any flexible surface (e.g., fibers in clothing). For the first time, there is a real opportunity to harness waste heat from unconventional sources, such as body heat, to power devices in an environmentally‐friendly way.  相似文献   

7.
Nanostructured V2O5 thin films have been prepared by means of cathodic deposition from an aqueous solution made from V2O5 and H2O2 directly on fluorine‐doped tin oxide coated (FTO) glasses followed by annealing at 500°C in air, and studied as film electrodes for lithium ion batteries. XPS results show that the as‐deposited films contained 15% V4+, however after annealing all the vanadium is oxidized to V5+. The crystallinity, surface morphology, and microstructures of the films have been investigated by means of XRD, SEM, and AFM. The V2O5 thin film electrodes show excellent electrochemical properties as cathodes for lithium ion intercalation: a high initial discharge capacity of 402 mA h g?1 and 240 mA h g?1 is retained after over 200 cycles with a discharging rate of 200 mA g?1 (1.3 C). The specific energy density is calculated as 900 W h kg?1 for the 1st cycle and 723 W h kg?1 for the 180th cycle when the films are tested at 200 mA g?1 (1.3 C). When discharge/charge is carried out at a high current density of 10.5 A g?1 (70 C), the thin film electrodes retain a good discharge capacity of 120 mA h g?1, and the specific power density is over 28 kW kg?1.  相似文献   

8.
In this work, a zT value as high as 1.2 at room temperature for n‐type Ag2Se films is reported grown by pulsed hybrid reactive magnetron sputtering (PHRMS). PHRMS is a novel technique developed in the lab that allows to grow film of selenides with different compositions in a few minutes with great quality. The improved zT value reported for room temperature results from the combination of the high power factors, similar to the best values reported for bulk Ag2Se (2440 ± 192 µW m?1 K?2), along with a reduced thermoelectric conductivity as low as 0.64 ± 0.1 W m?1 K?1. The maximum power factor for these films is of 4655 ± 407 µW m?1 K?2 at 103 °C. This material shows promise to work for room temperature applications. Obtaining high zT or, in other words, high power factor and low thermal conductivity values close to room temperature for thin films is of high importance to develop a new generation of wearable devices based on thermoelectric heat recovery.  相似文献   

9.
The ability to deposit conformal catalytic thin films enables opportunities to achieve complex nanostructured designs for catalysis. Atomic layer deposition (ALD) is capable of creating conformal thin films over complex substrates. Here, ALD‐MnOx on glassy carbon is investigated as a catalyst for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR), two reactions that are of growing interest due to their many applications in alternative energy technologies. The films are characterized by X‐ray photoelectron spectroscopy, X‐ray diffraction, scanning electron microscopy, ellipsometry, and cyclic voltammetry. The as‐deposited films consist of Mn(II)O, which is shown to be a poor catalyst for the ORR, but highly active for the OER. By controllably annealing the samples, Mn2O3 catalysts with good activity for both the ORR and OER are synthesized. Hypotheses are presented to explain the large difference in the activity between the MnO and Mn2O3 catalysts for the ORR, but similar activity for the OER, including the effects of surface oxidation under experimental conditions. These catalysts synthesized though ALD compare favorably to the best MnOx catalysts in the literature, demonstrating a viable way to produce highly active, conformal thin films from earth‐abundant materials for the ORR and the OER.  相似文献   

10.
p‐type CuInTe2 thermoelectric (TE) materials are of great interest for applications in the middle temperature range because of their environmentally benign chemical component and stable phase under operating temperatures. In order to enhance their TE performance to compete with the Pb based TE materials, a progressive regulation of electrical and thermal transport properties has been employed in this work. Anion P and Sb substitution is used to tune the electrical transport properties of CuInTe2 for the first time, leading to a sharp enhancement in power factor due to the reduction of electrical resistivity by acceptor doping and the increase of the Seebeck coefficient resulted from the improvement of density of states. Concurrently, In2O3 nanoinclusions are introduced through an in situ oxidation between CuInTe2 and ZnO additives, rendering a great reduction in the thermal conductivity of CuInTe2 by the extra phonon scattering. Then, by integrating the anion substitution and nanoinclusions, a high power factor of 1445 μW m?1 K?2 and enhanced ZT of 1.61 at 823 K are achieved in the CuInTe2 based TE material. This implies that the synergistic regulation of electrical and thermal transport properties by anion substitution and in situ nanostructure is a very effective approach to improve the TE performance of CuInTe2 compounds.  相似文献   

11.
Thermoelectric (TE) materials are important for the sustainable development because they enable the direct harvesting of low‐quality heat into electricity. Among them, conducting polymers have attracted great attention arising from their advantages, such as flexibility, nontoxicity, easy availability, and intrinsically low thermal conductivity. In this work, a novel and facile method is reported to significantly enhance the TE property of poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films through sequential post‐treatments with common acids and bases. Compared with the as‐prepared PEDOT:PSS, both the Seebeck coefficients and electrical conductivities can be remarkably enhanced after the treatments. The oxidation level, which significantly impacts the TE property of the PEDOT:PSS films, can also be well tuned by controlling the experimental conditions during the base treatment. The optimal PEDOT:PSS films can have a Seebeck coefficient of 39.2 µV K?1 and a conductivity of 2170 S cm?1 at room temperature, and the corresponding power factor is 334 µW (m?1 K?2). The enhancement in the TE properties is attributed to the synergetic effect of high charge mobility by the acid treatment and the optimal oxidation level tuned by the base treatment.  相似文献   

12.
This study demonstrates the fabrication and characterization of a flexible thermoelectric (TE) power generator composed of silicon nanowires (SiNWs) fabricated by top‐down method and discusses its strain‐dependence analysis. The Seebeck coefficients of the p‐ and n‐type SiNWs used to form a pn‐module are 156.4 and ?146.1 µV K?1, respectively. The maximum power factors of the p‐ and n‐type SiNWs are obtained as 8.79 and 8.87 mW (m K2)?1, respectively, under a convex bending of 1.11%, respectively; these are the largest values among the power factors hitherto reported for SiNWs. The dimensionless figure of merit (ZT ) values of the SiNWs at room temperature are 6.8 × 10?2 and 6.7 × 10?2 for the convex bent p‐ and n‐type SiNWs, respectively, with a strain of 1.11%. The thermoelectric properties of the pn‐module and its component SiNWs are characterized under strain conditions ranging from ?1.11% to 1.11%. The maximum Seebeck coefficient and power factor of the pn‐module are obtained as 448 µV K?1 and 14.2 mW (m K2)?1, respectively, under convex bending of 1.11%. Moreover, the mechanical stability of the TE characteristics of the pn‐module is demonstrated through a continuous bending test of 3000 cycles under convex bending of 0.66%.  相似文献   

13.
1‐2‐2‐type Zintl phase compounds have promising thermoelectric properties because of their complex crystal structures and multiple valence‐band structures. In this work, a series of single phase (Yb0.9Mg0.1)MgxZn2?xSb2 (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) compounds are prepared by alloying YbZn2Sb2 with 10 at% MgZn2Sb2 and different amounts of YbMg2Sb2. The incorporation of Mg at the Yb site, as well as at the Zn site, not only leads to an effective orbital alignment confirmed by the dramatically enhanced density of states effective mass and Seebeck coefficients, but also increases the point defect scattering, contributing to a low lattice thermal conductivity ≈0.54 W m?1 K?1 at 773 K. Combined with the optimization of the carrier concentration by Ag doping at the Zn site, a highest ZT value ≈1.5 at 773 K is achieved in (Yb0.9Mg0.1)Mg0.8Zn1.2Ag0.002Sb2, which is higher than that of all the previously reported 1‐2‐2‐type Zintl phase compounds.  相似文献   

14.
Ti, V, Cr, Nb, and Mo are found to be effective at increasing the Seebeck coefficient and power factor of n‐type PbSe at temperatures below 600 K. It is found that the higher Seebeck coefficients and power factors are due to higher Hall mobility ≈1000 cm2 V?1s?1 at lower carrier concentration. A larger average ZT value (relevant for applications) can be obtained by an optimization of carrier concentration to ≈1018–1019 cm?3. Even though the highest room temperature power factor ≈3.3 × 10?3 W m?1 K?2 is found in 1 at% Mo‐doped PbSe, the highest ZT is achieved in Cr‐doped PbSe. Combined with the lower thermal conductivity, ZT is improved to ≈0.4 at room temperature and peak ZTs of ≈1.0 are observed at ≈573 K for Pb0.9925Cr0.0075Se and ≈673 K for Pb0.995Cr0.005Se. The calculated device efficiency of Pb0.995Cr0.005Se is as high as ≈12.5% with cold side 300 K and hot side 873 K, higher than those of all the n‐type PbSe materials reported in the literature.  相似文献   

15.
1D nanostructures of soft ferroelectric materials exert promising potential in the fields of energy harvesting and flexible and printed nanoelectronics. Here, improved piezoelectric properties, energy‐harvesting performance, lower coercive fields, and the polarization orientation of poly(vinylidene fluoride–trifluoroethylene) (PVDF‐TrFE) nanotubes synthesized with nanoconfinement effect are reported. X‐ray diffraction (XRD) patterns of the nanotubes show the peak corresponding to the planes of (110)/(200), which is a signature of ferroelectric beta phase formation. Piezoforce spectroscopy measurements on the free‐standing horizontal nanotubes bundles reveal that the effective polarization direction is oriented at an inclination to the long axis of the nanotubes. The nanotubes exhibit a coercive field of 18.6 MV m?1 along the long axis and 40 MV m?1 (13.2 MV m?1 considering the air gap) in a direction perpendicular to the long axis, which is lower than the film counterpart of 50 MV m?1. The poled 200 nm nanotubes, with 40% reduction in poling field, give larger piezoelectric d33 coefficient values of 44 pm V?1, compared to poled films (≈20 pm V?1). The ferroelectric nanotubes deliver superior energy harvesting performance with an output voltage of ≈4.8 V and power of 2.2 μW cm?2, under a dynamic compression pressure of 0.075 MPa at 1 Hz.  相似文献   

16.
Co3O4 is investigated as a light absorber for all‐oxide thin‐film photovoltaic cells because of its nearly ideal optical bandgap of around 1.5 eV. Thin film TiO2/Co3O4 heterojunctions are produced by spray pyrolysis of TiO2 as a window layer, followed by pulsed laser deposition of Co3O4 as a light absorbing layer. The photovoltaic performance is investigated as a function of the Co3O4 deposition temperature and a direct correlation is found. The deposition temperature seems to affect both the crystallinity and the morphology of the absorber, which affects device performance. A maximum power of 22.7 μW cm?2 is obtained at the highest deposition temperature (600 °C) with an open circuit photovoltage of 430 mV and a short circuit photocurrent density of 0.2 mA cm?2. Performing deposition at 600 °C instead of room temperature improves power by an order of magnitude and reduces the tail states (Urbach edge energy). These phenomena can be explained by larger grains that grows at high temperature, as opposed to many nucleation events that occur at lower temperature.  相似文献   

17.
High energy density and power density within a limited volume of flexible solid‐state supercapacitors are highly desirable for practical applications. Here, free‐standing high‐quality 3D nanoporous duct‐like graphene (3D‐DG) films are fabricated with high flexibility and robustness as the backbones to deposit flower‐like MnO2 nanosheets (3D‐DG@MnO2). The 3D‐DG is the ideal support for the deposition of large amount of active materials because of its large surface area, appropriate pore structure, and negligible volume compared with other kinds of carbon backbones. Moreover, the 3D‐DG preserve the distinctive 2D coherent electronic properties of graphene, in which charge carriers move rapidly with a small resistance through the high‐quality and continuous chemical vapor deposition‐grown graphene building blocks, which results in a high rate performance. Marvelously, ultrathin (≈50 μm) flexible solid‐state asymmetric supercapacitors (ASCs) using 3D‐DG@MnO2 as the positive electrode and 3D hierarchical nanoporous graphene films as the negative electrode display ultrahigh volumetric energy density (28.2 mW h cm?3) and power density (55.7 W cm?3) at 2.0 V. Furthermore, as‐prepared ASCs show high cycle stability clearly demonstrating their broad applications as power supplies in wearable electronic devices.  相似文献   

18.
Solution and solution‐deposited thin films of the discotic liquid crystalline electron acceptor–donor–acceptor (A‐D‐A) p‐type organic semiconductor FHBC(TDPP)2, synthesized by coupling thienyl substituted diketopyrrolopyrrole (TDPP) onto a fluorenyl substituted hexa‐peri‐hexabenzocoronene (FHBC) core, are examined by ultrafast and nanosecond transient absorption spectroscopy, and time‐resolved photoluminescence studies to examine their ability to support singlet fission (SF). Grazing incidence wide‐angle X‐ray (GIWAX) studies indicate that as‐cast thin films of FHBC(TDPP)2 are “amorphous,” while hexagonal packed discotic liquid crystalline films evolve during thermal annealing. SF in as‐cast thin films is observed with an ≈150% triplet generation yield. Thermally annealing the thin films improves SF yields up to 170%. The as‐cast thin films show no long‐range order, indicating a new class of SF material where the requirement for local order and strong near neighbor coupling has been removed. Generation of long‐lived triplets (µs) suggests that these materials may also be suitable for inclusion in organic solar cells to enhance performance.  相似文献   

19.
Despite the unfavorable band structure with twofold degeneracy at the valence band maximum, MgAgSb is still an excellent p‐type thermoelectric material for applications near room temperature. The intrinsically weak electron–phonon coupling, reflected by the low deformation potential Edef ≈ 6.3 eV, plays a crucial role in the relatively high power factor of MgAgSb. More importantly, Li is successfully doped into Mg site to tune the carrier concentration, leading to the resistivity reduction by a factor of 3 and a consequent increase in power factor by ≈30% at 300 K. Low lattice thermal conductivity can be simultaneously achieved by all‐scale hierarchical phonon scattering architecture including high density of dislocations and nanoscale stacking faults, nanoinclusions, and multiscale grain boundaries. Collectively, much higher average power factor ≈25 μW cm?1 K?2 with a high average ZT ≈ 1.1 from 300 to 548 K is achieved for 0.01 Li doping, which would result in a high output power density ≈1.56 W cm?2 and leg efficiency ≈9.2% by calculations assuming cold‐side temperature Tc = 323 K, hot‐side temperature Th = 548 K, and leg length = 2 mm.  相似文献   

20.
Grain or phase boundaries play a critical role in the carrier and phonon transport in bulk thermoelectric materials. Previous investigations about controlling boundaries primarily focused on the reducing grain size or forming nanoinclusions. Herein, liquid phase compaction method is first used to fabricate the Yb‐filled CoSb3 with excess Sb content, which shows the typical feature of low‐angle grain boundaries with dense dislocation arrays. Seebeck coefficients show a dramatic increase via energy filtering effect through dislocation arrays with little deterioration on the carrier mobility, which significantly enhances the power factor over a broad temperature range with a high room‐temperature value around 47 μW cm?2 K?1. Simultaneously, the lattice thermal conductivity could be further suppressed via scattering phonons via dense dislocation scattering. As a result, the highest average figure of merit ZT of ≈1.08 from 300 to 850 K could be realized, comparable to the best reported result of single or triple‐filled Skutterudites. This work clearly points out that low‐angle grain boundaries fabricated by liquid phase compaction method could concurrently optimize the electrical and thermal transport properties leading to an obvious enhancement of both power factor and ZT .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号