首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ionic liquids (ILs) continue to receive attention for applications in electrochemistry because of their unique properties as charge carriers (electrolytes) and redox shuttles (solar cells) and their ability to promote energy storage either electrostatically (supercapacitors) or chemically (secondary batteries). More specifically, the confinement of ILs in nanopores or the adsorption at surfaces, are considered a promising strategy for all solid‐state energy storage and conversion devices. Upon such immobilization, one benefits from the specific properties of ILs (large electrochemical window, relatively high ionic conductivity, task‐specific functionalities, etc.) combined with surface and confinement effects that can be tuned by playing with the porosity and chemical nature of the host. Here, some emerging applications of ILs in electrochemistry are first discussed: silica‐based ionogels as solid electrolytes and systems that involve carbon host substrates, as typical electrode materials in electrical double layer capacitors and lithium secondary batteries. Also, a non‐exhaustive, yet a comprehensive picture of the confinement and surface effects at play in such applications is presented. Then, the confinement of task‐specific ILs such as protonic ILs, IL lithium salts, and biredox ILs, is discussed, which paves the way for promising perspectives. Finally, some concluding remarks are reported and directions for future work are suggested.  相似文献   

2.
Precise control of carrier concentration in both bulk and thin‐film materials is crucial for many solid‐state devices, including photovoltaic cells, superconductors, and high mobility transistors. For applications that span a wide temperature range (thermoelectric power generation being a prime example) the optimal carrier concentration varies as a function of temperature. This work presents a modified modulation doping method to engineer the temperature dependence of the carrier concentration by incorporating a nanosize secondary phase that controls the temperature‐dependent doping in the bulk matrix. This study demonstrates this technique by de‐doping the heavily defect‐doped degenerate semiconductor GeTe, thereby enhancing its average power factor by 100% at low temperatures, with no deterioration at high temperatures. This can be a general method to improve the average thermoelectric performance of many other materials.  相似文献   

3.
Machine learning (ML) is rapidly revolutionizing many fields and is starting to change landscapes for physics and chemistry. With its ability to solve complex tasks autonomously, ML is being exploited as a radically new way to help find material correlations, understand materials chemistry, and accelerate the discovery of materials. Here, an in‐depth review of the application of ML to energy materials, including rechargeable alkali‐ion batteries, photovoltaics, catalysts, thermoelectrics, piezoelectrics, and superconductors, is presented. A conceptual framework is first provided for ML in materials science, with a broad overview of different ML techniques as well as best practices. This is followed by a critical discussion of how ML is applied in energy materials. This review is concluded with the perspectives on major challenges and opportunities in this exciting field.  相似文献   

4.
This article presents a prototype of a surface-enhanced Raman spectroscopy (SERS)-encoded magnetic bead of 8 μm diameter. The core part of the bead is composed of a magnetic nanoparticle (NP)-embedded sulfonated polystyrene bead. The outer part of the bead is embedded with Ag NPs on which labeling molecules generating specific SERS bands are adsorbed. A silica shell is fabricated for further bioconjugation and protection of SERS signaling. Benzenethiol, 4-mercaptotoluene, 2-naphthalenethiol, and 4-aminothiophenol are used as labeling molecules. The magnetic SERS beads are used as substrates for protein sensing and screening with easy handling. As a model application, streptavidin-bound magnetic SERS beads are used to illustrate selective separation in a flow cytometry system, and the screened beads are spectrally recognized by Raman spectroscopy. The proposed magnetic SERS beads are likely to be used as a versatile solid support for protein sensing and screening in multiple assay technology.  相似文献   

5.
For the study of electromagnetic dosimetry and hyperthermia, it is necessary to simulate human biological materials. This can be done by chemical mixtures that are described in this paper. Formulas are presented for simulating bone, lung, brain, and muscle tissue in the frequency range of 100 MHz to 1 GHz. By using these preparations a realistic equivalent to the human body can be constructed.  相似文献   

6.
7.
Iodine‐doped n‐type SnSe polycrystalline by melting and hot pressing is prepared. The prepared material is anisotropic with a peak ZT of ≈0.8 at about 773 K measured along the hot pressing direction. This is the first report on thermoelectric properties of n‐type Sn chalcogenide alloys. With increasing content of iodine, the carrier concentration changed from 2.3 × 1017 cm?3 (p‐type) to 5.0 × 1015 cm?3 (n‐type) then to 2.0 × 1017 cm?3 (n‐type). The decent ZT is mainly attributed to the intrinsically low thermal conductivity due to the high anharmonicity of the chemical bonds like those in p‐type SnSe. By alloying with 10 at% SnS, even lower thermal conductivity and an enhanced Seebeck coefficient were achieved, leading to an increased ZT of ≈1.0 at about 773 K measured also along the hot pressing direction.  相似文献   

8.
The realization of a complete tandem polymer solar cell under ambient conditions using only printing and coating methods on a flexible substrate results in a fully scalable process but also requires accurate control during layer formation to succeed. The serial process where the layers are added one after the other by wet processing leaves plenty of room for error and the process development calls for an analytical technique that enables 3D reconstruction of the layer stack with the possibility to probe thickness, density, and chemistry of the individual layers in the stack. The use of ptychography on a complete 12‐layer solar cell stack is presented and it is shown that this technique provides the necessary insight to enable efficient development of inks and processes for the most critical layers in the tandem stack such as the recombination layer where solvent penetration in fully solution processed 12‐layer stacks is critical in eleven of the steps.  相似文献   

9.
Dynamic hybrid materials based on Müller’s porous Keplerate type molybdenum-oxide based nanocapsules are described. The present efforts involve the preparation and properties of hybrid materials formed between lipophilic MCM41-mesoporous or octadecyldimethylsilica with Keplerate type molybdenum-oxide based Mo132 nanocapsules - designed by encapsulation into DODA - dimethyldioctadecylammonium cationic surfactants (DODA)40Mo132. In particular, the use of a “dynamic reversible hydrophobic interface” between (DODA)40Mo132 and lipophilic silica can render the emerging hybrid mesophases self-adaptive. The reversible hydrophobic interactions allow to both capsule and inorganic silica components to mutually (synergistically) adapt their spatial constitution during simultaneous (collective) formation of self-organized hybrid domains. This might provide new insights into the features that control the design of novel complex materials.  相似文献   

10.
11.
Rational embellishment of self-assembling two-dimensional (2D) proteins make it possible to build 3D nanomaterials with novel catalytic, optoelectronic and mechanical properties. However, introducing multiple sites of embellishment into 2D protein arrays without affecting the self-assembly is challenging, limiting the ability to program in additional functionality and new 3D configurations. Here we introduce two orthogonal covalent linkages at multiple sites in a 2D crystalline-forming protein without affecting its self-assembly. We first engineered the surface-layer protein SbsB from Geobacillus stearothermophilus pV72/p2 to display isopeptide bond-forming protein conjugation pairs, SpyTag or SnoopTag, at four positions spaced 5.7-10.5 nm apart laterally and 3 nm axially. The C-terminal and two newly-identified locations within SbsB monomer accommodated the short SpyTag or SnoopTag peptide tags without affecting the 2D lattice structure. Introducing tags at distinct locations enabled orthogonal and covalent binding of SpyCatcher- or SnoopCatcher-protein fusions to micron-sized 2D nanosheets. By introducing different types of bifunctional cross-linkers, the dual-functionalized nanosheets were programmed to self-assemble into different 3D stacks, all of which retain their nanoscale order. Thus, our work creates a modular protein platform that is easy to program to create dual-functionalized 2D and lamellar 3D nanomaterials with new catalytic, optoelectronic, and mechanical properties.  相似文献   

12.
《Process Biochemistry》2014,49(5):845-849
A novel and simple process for the surface functionalization of micron-sized monodisperse magnetic polystyrene (PS) microbeads was reported. The polystyrene seed particles were prepared prior to the dispersion polymerization method. Afterwards, series of surface chemical modifications on polystyrene microspheres were conducted, and three end-functional microspheres with carboxyl, imidazolyl and sulphydryl groups were obtained. The functional magnetic polystyrene microspheres were prepared by impregnation and subsequent precipitation of ferric and ferrous ions into the polystyrene particles. Finally, the functional magnetic polystyrene was used for the reversible immobilization of glucoamylase via metal-affinity adsorption. The results indicated that the obtained immobilized glucoamylase presented excellent reusability, applicability, magnetic response and regeneration of supports. The magnetic PS microspheres retained >65% of its initial activity at 65 °C over 6 h; and the lowest residual activity of immobilized glucoamylase prepared by regenerated supports still remained about 50% of the initial activity after the 10th cycles.  相似文献   

13.
Microbubble fabrication (by use of a fine emulsion) provides a means of increasing the surface-area-to-volume (SAV) ratio of polymer materials, which is particularly useful for separations applications. Porous polydimethylsiloxane (PDMS) beads can be produced by heat-curing such an emulsion, allowing the interface between the aqueous and aliphatic phases to mold the morphology of the polymer. In the procedures described here, both polymer and crosslinker (triethoxysilane) are sonicated together in a cold-bath sonicator. Following a period of cross-linking, emulsions are added dropwise to a hot surfactant solution, allowing the aqueous phase of the emulsion to separate, and forming porous polymer beads. We demonstrate that this method can be tuned, and the SAV ratio optimized, by adjusting the electrolyte content of the aqueous phase in the emulsion. Beads produced in this way are imaged with scanning electron microscopy, and representative SAV ratios are determined using Brunauer–Emmett–Teller (BET) analysis. Considerable variability with the electrolyte identity is observed, but the general trend is consistent: there is a maximum in SAV obtained at a specific concentration, after which porosity decreases markedly.  相似文献   

14.
The Li–O2 battery (LOB) represents a promising candidate for future electric vehicles owing to its outstanding energy density. However, the practical application of LOB cells is largely blocked by the poor cycling performance of cathode materials. Herein, an ultralong 440‐cycle life of an LOB cell is achieved using CeO2 nanocubes super‐assembled on an inverse opal carbon matrix as the cathode material without any additives. CeO2 is proved to be effective for the complete and sensitive decomposition of loosely stacked Li2O2 films during the oxygen evolution reaction process and full accommodation of volume changes caused by the fast growth of Li2O2 films during the oxygen reduction reaction process. The super‐assembled porous CeO2/C frameworks satisfy critical requirements including controlled size, morphology, high Ce3+/Ce4+ ratio, and efficient volume change accommodation, which dramatically increase the cycle life of LOB cell to 440 cycles. This study reveals the design strategy for high performance CeO2 catalyst cathodes for LOB cells and the generation mechanisms of Li2O2 films during the discharge process by using density functional theory calculations, showing new avenues for improving the future smart design of CeO2‐based cathode catalysts for Li–O2 batteries.  相似文献   

15.
16.
Hydrothermal chemistry was used to prepare the bimetallic organic-inorganic hybrid oxide [Cu(I)Cu(II)2(trz)2Mo4O13(OH)] · 6H2O (1 · 6H2O). The structure consists of chains linked through into a three-dimensional framework. The structures of the simple metal-triazole phases [MoO3(Htrz)0.5] (2) and [Cu(trz)] (3) are also reported. Compound 2 is two-dimensional, constructed from corner-sharing {MoO5N} octahedra. Compound 3 consists of {Cu(trz)}n chains linked through weak Cu?Cu contacts into a virtual layer.  相似文献   

17.
4D bioprinting has emerged as a powerful technique where the fourth dimension “time” is incorporated with 3D bioprinting. In this technique, the printed bioconstructs are able to change their shapes or functionalities when triggered by either internal or external stimuli. In 4D bioprinting, the materials with/without cells enable the spatial–temporal control of the shape and/or functionality of the constructs. Using this method, researchers have printed bioconstructs that can transform into rather complex structures which are difficult to obtain directly by 3D bioprinting or other methods. Although the history of 4D bioprinting is short, rapid progress in this field is witnessed recently, with focus mainly on developing novel 4D printable materials, exploring novel methods to precisely control the process, and pursuing biomedical applications. To better understand this technique, the recent advances of 4D bioprinting, including the mechanism, structure design principles, applications in biomedical engineering, and also the facing challenges are reviewed.  相似文献   

18.
Atomic layer deposition (ALD) of Al2O3 is applied on a polypropylene separator for lithium‐ion batteries. A thin Al2O3 layer (<10 nm) is coated on every surface of the porous polymer microframework without significantly increasing the total separator thickness. The thin Al2O3 ALD coating results in significantly suppressed thermal shrinkage, which may lead to improved safety of the batteries. More importantly, the wettability of Al2O3 ALD‐coated separators in an extremely polar electrolyte based on pure propylene carbonate (PC) solvent is demonstrated, without any decrease in electrochemical performances such as capacity, rate capability, and cycle life. Finally, a LiCoO2/natural graphite full cell is demonstrated under extremely severe conditions (pure PC‐based electrolyte and high (4.5 V) upper cut‐off potential), which is enabled by the Al2O3 ALD coating on all three components (cathode, anode, and separator).  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号