首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reversed chirality has frequently evolved in snails, although the vast majority coils dextrally. However, there are often sinistral species within a dextral genus or almost exclusively sinistral families, such as the Clausiliidae. Some populations of the predominantly sinistral clausiliid genus Albinaria, in the southern Greek mainland, coil dextrally. The origin, evolution and distribution of the dextral Albinaria are puzzling, and as there is no reliable phylogenetic reconstruction for this speciose genus, it remains unclear how many times a shift in chirality has really occurred. In this study, our aim was to elucidate the evolutionary pathways of dextrality in Albinaria. We undertook a molecular phylogenetic analysis of two mtDNA (16S and COI) and one nDNA marker (ITS1) and included dextral and sinistral representatives found in syntopy or not. Both mtDNA and nDNA tree topologies imply that dextrals did not evolve as a monophyletic lineage. Instead, dextral lineages have evolved from sinistral ancestors multiple times independently. The fragmented population structure in Albinaria facilitates genetic drift and contributes to fixation of the opposite chirality and overcoming of the mating disadvantage of left–right reversal. Stochastic phenomena and biogeographical barriers have trapped those reversals in a limited geographical area.  相似文献   

2.
It has long been debated whether mirror image‐like similarity in shell morphology between enantiomorphic pairs of dextral and sinistral taxa represents their sister relationship, or each of them is closer related to other congeners with the same coiling direction. The obligate rock‐dwelling genus Cristataria Vest, 1867 of the eastern Mediterranean region belongs to the Alopiinae subfamily of door snails (Clausiliidae). Cristataria and a few other genera of this subfamily include enantiomorphic pairs that are conchologically very similar to each other. Dextral C. colbeauiana (Pfeiffer, 1861) and its sinistral counterpart of such an enantiomorphic pair occur nearby one another in southern Turkey. However, the latter has been classified either as the sinistral subspecies C. colbeauiana inversa Szekeres, 1998 or as a form of sinistral C. leprevieri (Pallary, 1922). To examine the phylogenetic relationship of this enantiomorphic pair, we carried out molecular phylogenetic analysis of all the Turkish and two other Cristataria taxa based on both mitochondrial and nuclear DNA markers. Our results show that dextral C. colbeauiana and its sinistral counterpart are closest related to one another. This supports the classification of this enantiomorphic pair as dextral C. colbeauiana colbeauiana and sinistral C. colbeauiana inversa. Our results also reveal that these taxa and C. intersita Németh & Szekeres, 1995, sharing a characteristic collar behind the aperture of the shell, represent a monophyletic lineage. By contrast, the Cristataria species of non‐collared shells belong to another clade.  相似文献   

3.
Shell chirality among Cambrian gastropods is discussed. It is demonstrated that the earliest members of the class include chiral aberrations with abnormal opposite coiling of the shell. It is assumed that, in Cambrian gastropods, speciation could have occurred by mutation in the locus determining the chirality, as is proposed for extant gastropods. In contrast to modern gastropods, the existence of chiral morphs within single species has not been recorded in Cambrian mollusks, whereas the presence of chiral twin species is possible. The systematic position of sinistral representatives of the genus Aldanella Vostokova, 1962 is considered. Aldanella golubevi sp. nov. with sinistral shell is described from the base of the Tommotian Stage of the Anabar Region. Aberrant sinistral specimens of the normally dextral species Aldanella utchurica Missarzhevsky in Rozanov et al., 1969 and Pelagiella adunca Missarzhevsky in Rozanov et al., 1969 are figured.  相似文献   

4.
Sinistral and dextral snails have repeatedly evolved by left-right reversal of bilateral asymmetry as well as coiling direction. However, in most snail species, populations are fixed for either enantiomorph and laboratory breeding is difficult even if chiral variants are found. Thus, only few experimental models of chiral variation within species have been available to study the evolution of the primary asymmetry. We have established laboratory lines of enantiomorphs of the pond snail Lymnaea stagnalis starting from a wild population. Crossing experiments demonstrated that the primary asymmetry of L. stagnalis is determined by the maternal genotype at a single nuclear locus where the dextral allele is dominant to the sinistral allele. Field surveys revealed that the sinistral allele has persisted for at least 10 years, that is, about 10 generations. The frequency of the sinistral allele showed large fluctuations, reaching as frequent as 0.156 in estimate under the assumption of Hardy-Weinberg equilibrium. The frequency shifts suggest that selection against chiral reversal was not strong enough to counterbalance genetic drift in an ephemeral small pond. Because of the advantages as a model animal, enantiomorphs of L. stagnalis can be a unique system to study aspects of chirality in diverse biological disciplines.  相似文献   

5.
The mitochondrial gene cytochrome-c-oxidase subunit 1 (COI) is useful in many taxa for phylogenetics, population genetics, metabarcoding, and rapid species identifications. However, the phylum Ctenophora (comb jellies) has historically been difficult to study due to divergent mitochondrial sequences and the corresponding inability to amplify COI with degenerate and standard COI “barcoding” primers. As a result, there are very few COI sequences available for ctenophores, despite over 200 described species in the phylum. Here, we designed new primers and amplified the COI fragment from members of all major groups of ctenophores, including many undescribed species. Phylogenetic analyses of the resulting COI sequences revealed high diversity within many groups that was not evident from more conserved 18S rDNA sequences, in particular among the Lobata (Ctenophora; Tentaculata; Lobata). The COI phylogenetic results also revealed unexpected community structure within the genus Bolinopsis, suggested new species within the genus Bathocyroe, and supported the ecological and morphological differences of some species such as Lampocteis cruentiventer and similar undescribed lobates (Lampocteis sp. “V” stratified by depth, and “A” differentiated by colour). The newly designed primers reported herein provide important tools to enable researchers to illuminate the diversity of ctenophores worldwide via quick molecular identifications, improve the ability to analyse environmental DNA by improving reference libraries and amplifications, and enable a new breadth of population genetic studies.  相似文献   

6.
The phylogenetic relationships among the Japanese members of the genus Eubrianax (Coleoptera: Psephenidae) were examined using the mitochondrial cytochrome oxidase subunit I (COI) gene and nuclear 28S rRNA gene sequences. Based on the molecular phylogeny as well as morphological features, the species status of Eubrianax brunneicornis Nakane, 1952 was proposed. The phylogenetic analyses recovered monophyly of the previously proposed pellucidus species group with four Japanese species, whereas a single Japanese species of the granicollis group was included in the lineage of the ramicornis group with five Japanese species. The divergence times of the species were estimated by dating the phylogenetic tree against the fossil record and a molecular clock based on the COI gene. The divergence of the Japanese species was inferred to have occurred during the Pliocene epoch.  相似文献   

7.
Why are sinistral snails so rare? Two main hypotheses are that selection acts against the establishment of new coiling morphs, because dextral and sinistral snails have trouble mating, or else a developmental constraint prevents the establishment of sinistrals. We therefore used an isolate of the snail Lymnaea stagnalis, in which sinistrals are rare, and populations of Partula suturalis, in which sinistrals are common, as well as a mathematical model, to understand the circumstances by which new morphs evolve. The main finding is that the sinistral genotype is associated with reduced egg viability in L. stagnalis, but in P. suturalis individuals of sinistral and dextral genotype appear equally fecund, implying a lack of a constraint. As positive frequency‐dependent selection against the rare chiral morph in P. suturalis also operates over a narrow range (< 3%), the results suggest a model for chiral evolution in snails in which weak positive frequency‐dependent selection may be overcome by a negative frequency‐dependent selection, such as reproductive character displacement. In snails, there is not always a developmental constraint. As the direction of cleavage, and thus the directional asymmetry of the entire body, does not generally vary in other Spiralia (annelids, echiurans, vestimentiferans, sipunculids and nemerteans), it remains an open question as to whether this is because of a constraint and/or because most taxa do not have a conspicuous external asymmetry (like a shell) upon which selection can act.  相似文献   

8.
ABSTRACT

The species of Satsuma are mostly endemic to East Asia except for one species distributed in Batan Island of the Philippines. More than 99% of the known species of this genus are endemic to the island environment. Only three species are currently known to occur on the mainland. Here we describe a new sinistral Satsuma species from China, Satsuma guandi n. sp. We studied the shell morphology and genital anatomy of the new species and reconstructed the molecular phylogeny of the genus based on partial nucleotide sequences of the mitochondrial gene cytochrome c oxidase subunit I and nuclear markers from the ribosomal RNA cistrons (the internal transcribed spacer and the external transcribed spacer regions). The new species differs from other sinistral Satsuma species by having a strongly angulated shell and an open dark brownish-red umbilicus. The new species also differed from all other sinistral congeners in details of its reproductive anatomy. The molecular analysis supports the validity of the new species within the genus Satsuma.  相似文献   

9.
《Journal of Asia》2014,17(3):617-627
The mitochondrial cytochrome c oxidase subunit I (COI) gene has been utilized as a molecular marker for aphid species identification. However, this gene has sometimes resulted in misidentification because of low interspecific genetic divergences between some species pairs. In this study, to propose new molecular markers for the family Aphididae, we first screened 2289 sequences of 11 genes (COI, COII, CytB, ATP6, lrRNA, srRNA, ITS1, ITS2, EF1a, 18S, and 28S) collected from the GenBank. Among the 11 genes, ATP6 gene revealed the largest genetic divergence among congeneric species with the smallest divergence among conspecific individuals; in contrast, species pairs with low genetic divergences (< 1%) were not observed. Secondly, for statistically testing the usefulness of ATP6 gene in species identification, we analyzed genetic distances between all of the combinations of 32 individuals of 20 species for both COI and ATP6 genes. The ATP6 gene showed lower intraspecific (on average 0.08%) and higher interspecific (on average 8.28%) genetic distances than the COI gene (on average 0.19% and 6.24%, respectively) for the same pairs of individuals. This study corroborates the usefulness of the ATP6 gene as a new molecular marker that could improve the misidentification problems that are inherent with the COI gene.  相似文献   

10.
Although male polymorphisms occur widely in nature and have received considerable recent attention from studies of alternative mating strategies, male genital polymorphisms are less well known. Here, we describe a dimorphism in the orientation of the male genitalic complex of the praying mantid genus Ciulfina. Populations of Ciulfina species vary in the proportion of males with dextral (right‐oriented) and sinistral (left‐oriented) genitalia, ranging from directional asymmetry (single orientation only) to apparent antisymmetry (equal proportions of both orientations). The proportion of dextral males varied between species (C. baldersoni: 46%; C. rentzi: 24%; C. klassi: 100%; C. biseriata: 83%) and between populations. We used elliptic Fourier analysis to quantify shape and size variation between the genitalia of dextral and sinistral males and determined that the two forms were mirror images of one another in two species. We found that the level of mechanical reproductive isolation between heterospecific populations of opposite genital orientation was no greater than that between heterospecific populations with the same orientation or of mixed orientation. Genital orientation therefore did not influence premating isolation between these species, despite complete postmating isolation. The geographic proximity of populations to heterospecifics also showed no particular pattern with respect to genital orientation. These results suggest that reversible trait asymmetry in Ciulfina is not driven by reproductive isolation, and add to the growing evidence against the species isolation hypothesis for rapid genital evolution. J. Morphol. 271:1176–1184, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Despite the fact that Drosophilidae is a very diverse and well‐studied taxon, the New World genus Rhinoleucophenga is yet poorly understood even in regard to species distribution and morphological variability pattern. In this sense, R. punctulata is a species widely distributed in the Neotropical region. Specimens of R. punctulata were collected from different biomes in Brazil: Pampa, Cerrado and Caatinga sensu strictu, and a southern Amazonian savannah enclave area. Geographical variations in the external body morphology and in the morphology of spermatheca were noticed among the different populations. The hypothesis that each population could be a different species was tested through molecular data. A fragment of the mitochondrial cytochrome c oxydase subunit I (COI) gene was sequenced to perform phylogenetic analyses through neighbor‐joining and Bayesian inferences. Pairwise genetic divergences of COI sequences were calculated using DNA barcode premises. The analyzed populations presented different variation levels in both morphology and molecular traits. However, new species were not proposed because the intra‐population nucleotide variations exceeded the inter‐population ones. The noticeable morphological and genetic variations revealed among the four studied populations of R. punctulata in different biomes of Brazil suggest the necessity that morphological, distributional and molecular data at the population level should be integrated into complementary datasets to better understand the biological diversity of Rhinoleucophenga through Neotropical environments.  相似文献   

12.
The sequence of a 595-bp fragment of the mitochondrial COI gene was determined for the species Chironomus usenicus and Chironomus curabilis of the genus Chironomus. Phylogenetic reconstructions based on the analysis of the COI gene sequence coincide on the whole with cytogenetic data, permitting Ch. usenicus and Ch. curabilis to be regarded as members of the group plumosus. Chironomus usenicus and Ch. plumosus have identical COI gene sequences. Two hypotheses explaining this identity are considered: inheritance of mtDNA from one of the parental species during hybridogenesis and horizontal transfer of mitochondrial genes.  相似文献   

13.
Diachasmimorpha longicaudata is an Opiinae parasitoid used to control tephritid fruit flies, which cause tremendous economic losses of fruits worldwide. In Thailand, D. longicaudata is classified as three sibling species, DLA, DLB and DLBB, based on the morphological and biological species concepts but their genetic variation has not been studied. Therefore, we investigated the genetic differentiation of the mitochondrial COI gene to clarify the ambiguous taxonomy of this species complex. The 603‐bp COI region was sequenced from laboratory‐bred colonies and field‐collected specimens from seven locations representing five geographical regions in Thailand. DLA was associated with the host Bactrocera correcta while DLB and DLBB were associated with Bactrocera dorsalis. The interspecific nucleotide differences of COI sequences among the three groups ranged from 6.70% to 7.62% (Kimura 2‐parameter distance), which adequately separates species complexes within the order Hymenoptera and supports the current sibling species classification. The neighbor joining, maximum likelihood and consensus Bayesian phylogenetic trees constructed from COI sequences revealed that the three sibling species of laboratory and field‐collected D. longicaudata are monophyletic with 100% support. The high genetic variation and molecular phylogeny of the COI sequences were shown to discriminate between the D. longicaudata species examined in this study.  相似文献   

14.
A. Kumar  J. P. Gupta 《Genetica》1987,75(1):39-46
The phylogenetic relationships among three derivative forms of the immigrans-Hirtodrosophila radiation viz. Chaetodrosophilella, Zaprionus and the immigrans species group are examined, by comparing the banding patterns of their polytene chromosomes and by analysing the nature of their heterochromatin. Based on the results of these studies it is concluded that D. quadrilineata has a very strong affinity with the members of the immigrans species group, while the genus Zaprionus represents a very distinct evolutionary lineage. This study further indicates that D. quadrilineata is a karyotypically primitive species having five pairs of rods and one pair of dots, while the karyotype of other members of the immigrans species group appears to have undergone modifications through fusions, fissions, inversions and the addition or deletion of heterochromatin to dots and other chromosomes.  相似文献   

15.
In this study, we examined the genetic structure and population history of the high elevation black fly Simulium feuerborni in Thailand at both cytogenetic and molecular genetic levels. Cytological examination revealed two cytoforms differentiated by fixed chromosome inversions. The distributions of the cytoforms were associated with geographic origins. Cytoform A was found in the lower north and northeast, and cytoform B was found in the upper northern region of Thailand. Molecular data based on the mitochondrial cytochrome oxidase subunit I (COI) barcoding sequence supports the separation of the cytoforms. The average sequence divergence between the two cytoforms was 3.75%, which is higher than the threshold value for the species level based on a COI barcoding sequence. Median joining network clearly differentiated the haplotypes of the cytoforms into different lineages. Population pairwise FST and amova analyses reveal significant genetic differentiation between cytoforms. This indicates that the low land areas separating these populations act as a gene flow barrier. No genetic differentiation was detected within cytoforms. This could be due to a recent sharing of population history. Mismatch distribution analysis revealed population expansion in the northern lineage of the cytoform B approximately 220 000 years ago. More recent expansion (32 000 years ago) was found in the lower north and northeast (cytoform A) lineage. The demographic history of S. feuerborni mirrored previous findings in black flies and other insect species in Thailand. This indicates the important role of Pleistocene climatic change on genetic structure and diversity of Southeast Asian mainland species.  相似文献   

16.
Soft‐bodied marine taxa, like ribbon worms (Nemertea), often lack clear diagnostic morphological characters impeding traditional species delimitation. Therefore, recent studies concentrated on molecular genetic methods to solve taxonomic issues. Different delimitation methods were employed to explore species boundaries and the presence of cryptic species. However, the performance of the different delimitation methods needs to be tested. A particularly promising nemertean genus in this regard is the palaeonemertean genus Cephalothrix that is commonly found in European waters. In order to gain information on the number and distribution of European cephalotrichids and to test different tree‐based and non‐tree‐based delimitation methods, we analyzed a dataset comprising the barcoding region of the mitochondrial cytochrome c oxidase subunit I (COI) of 215 European Cephalothrix specimens, of which 78 were collected for this study. Our results show the presence of 12–13 European lineages of which several can be assigned to known European species. Analyzing a second dataset comprising 74 additional sequences from the Pacific and the Atlantic Oceans helped identify some of the unassigned European specimens. One resulting clade seems to represent a non‐native introduced Cephalothrix species, while another has never been recorded from Europe before. In our analysis, especially the tree‐based methods and the phylogenetic analysis proved to be a useful tool when delimiting species. It remains unclear whether the different identified clades result from cryptic speciation or from a high genetic variability of the COI gene.  相似文献   

17.
Genotyping of 2 well‐known weevil species from the genus Ceutorhynchus (Coleoptera: Curculionidae) distributed in west Palearctic, C. erysimi and C. contractus, revealed phenotype versus genotype inconsistencies in a set of 56 specimens (25 C. erysimi and 31 C. contractus) collected from 25 locations in Serbia and Montenegro. An analysis of the mitochondrial cytochrome oxidase subunit I gene (COI), widely used as a barcoding region, and a nuclear gene, elongation factor‐1α (EF‐1α), revealed stable genetic divergence among these species. The average uncorrected pairwise distances for the COI and EF‐1α genes were 3.8%, and 1.3%, respectively, indicating 2 genetically well‐segregated species. However, the genetic data were not congruent with the phenotypic characteristics of the studied specimens. In the first place, C. erysimi genotypes were attached to specimens with phenotypic characteristics of C. contractus. Species‐specific PCR‐RFLP assays for the barcoding gene COI were applied for the molecular identification of 101 additional specimens of both morphospecies (33 C. erysimi and 68 C. contractus) and were found to confirm this incongruity. The discrepancy between the genetic and morphological data raises the question of the accuracy of using a barcoding approach, as it may result in misleading conclusions about the taxonomic position of the studied organism. Additionally, the typological species concept shows considerable weakness when genetic data are not supported with phenotypic characteristics as in case of asymmetric introgression, which may cause certain problems, especially in applied studies such as biological control programs in which the biological properties of the studied organisms are the main focus.  相似文献   

18.
The handedness of gastropods is genetically determined. The freshwater gastropod Lymnaea stagnalis is a normally dextral species, but contains minor sinistral populations. The gene responsible for handedness determination in this species is predicted to function maternally and specifically in the dextral-ovipositing snail. In this study, we used differential screening and cDNA subtraction to isolate eight dextral genes that are specific to, or enriched in, the dextral-ovipositing strains of L. stagnalis. These genes were promising candidates for the handedness-determining gene. In order to determine whether the true handedness-determining gene was among them, we tested for genetic correlations between the level of expression of each dextral gene and the handedness phenotype, i.e., the chirality of the next generation offspring, by using a collection of backcross F2 progeny of F1 offspring from crosses between dextral and sinistral strains. Although the present study could not identify the handedness-determining molecules, this approach appears to be promising for the isolation of such developmentally important genes.Edited by N. Satoh  相似文献   

19.
20.
The genus Aylacostoma Spix, 1827, is mainly endemic to South America, and comprises about 30 nominal species, most of which were described based solely on conchological features following the typological approaches of most of the 19th and the mid‐20th century authors. Here, we redescribe Aylacostoma chloroticum Hylton Scott, 1954, and describe A ylacostoma brunneum sp. nov . from the High Paraná River (Argentina–Paraguay) by means of morphological and molecular characters. Both are threatened species currently included into an ongoing ex situ conservation programme, as their habitats have disappeared because of damming and the filling up of the Yacyretá Reservoir in the early 1990s. We used DNA sequences from cytochrome b and cytochrome oxidase subunit I (COI) genes to estimate their genetic distances, and the COI sequences were also used to assess their specific status under the evolutionary genetic species concept by means of the K/θ method. Our results clearly demonstrate that both must be recognized as evolutionary genetic species, despite only minor differences in morphological characters other than in the shells. © 2014 The Linnean Society of London  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号