首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Australian lungfish is a unique living representative of an ancient dipnoan lineage, listed as ‘vulnerable’ to extinction under Australia’s Environment Protection and Biodiversity Conservation Act 1999. Historical accounts indicate this species occurred naturally in two adjacent river systems in Australia, the Burnett and Mary. Current day populations in other rivers are thought to have arisen by translocation from these source populations. Early genetic work detected very little variation and so had limited power to answer questions relevant for management including how genetic variation is partitioned within and among sub-populations. In this study, we use newly developed microsatellite markers to examine samples from the Burnett and Mary Rivers, as well as from two populations thought to be of translocated origin, Brisbane and North Pine. We test whether there is significant genetic structure among and within river drainages; assign putatively translocated populations to potential source populations; and estimate effective population sizes. Eleven polymorphic microsatellite loci genotyped in 218 individuals gave an average within-population heterozygosity of 0.39 which is low relative to other threatened taxa and for freshwater fishes in general. Based on F ST values (average over loci = 0.11) and STRUCTURE analyses, we identify three distinct populations in the natural range, one in the Burnett and two distinct populations in the Mary. These analyses also support the hypothesis that the Mary River is the likely source of translocated populations in the Brisbane and North Pine rivers, which agrees with historical published records of a translocation event giving rise to these populations. We were unable to obtain bounded estimates of effective population size, as we have too few genotype combinations, although point estimates were low, ranging from 29 - 129. We recommend that, in order to preserve any local adaptation in the three distinct populations that they be managed separately.  相似文献   

2.
We examined range‐wide mitochondrial phylogeographical structure in the riverine freshwater turtle Chelodina expansa to determine whether this species exhibits deep genetic divergence between coastal and inland hydrological provinces, as seen in co‐distributed freshwater taxa. We sequenced two mitochondrial loci, genealogical relationships were assessed using a network approach, and relationships among biogeographical regions were tested using analyses of molecular variance. Population history was evaluated using neutrality tests, indices of demographic expansion, and mismatch analyses. Twenty‐one haplotypes were recovered across two mitochondrial haplogroups separated by approximately 4% nucleotide divergence. The haplogroups have discrete geographical boundaries but only partially support a hypothesis of deep divergence between coastal and inland bioregions. The first haplogroup comprises populations from the inland Murray‐Darling Basin and from coastal catchments south of the Mary River in south‐east Queensland. The second haplogroup comprises populations from coastal catchments north of the Mary River. Cryptic phylogeographical barriers separating adjacent coastal populations are congruent with those demonstrated for other freshwater taxa and may result from the combined influences of the Conondale Range and alluvial deposits at the mouth of the Mary River. The findings of the present study demonstrate that freshwater taxa commonly display genetic differentiation within a biogeographical region where no boundaries have been recognized, highlighting the need to uncover cryptic microbiogeographical regions to aid conservation of freshwater biota. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 789–805.  相似文献   

3.
The Upper Guinean Forests of Guinea, Sierra Leone and Liberia contain high levels of freshwater biodiversity. The Guinean Range and associated Fouta Djallon highlands separate two biogeographical provinces in the region and served as a refugium during past climatic fluctuations. While many species of freshwater fishes are restricted to one biogeographical province or the other, some are reported to occur on both sides of the divide. Here, we examine the molecular and morphological diversity of an endemic small African barb, Enteromius foutensis, reported to occur in both provinces. This integrative analysis revealed unrecognized diversity and suggests recent, or ongoing, events that facilitated geodispersal and subsequent divergence in the region. The molecular analysis revealed three divergent and well‐supported populations within E. foutensis. Accounting for allometric shape variation allowed us to observe diagnostic morphological differences among the populations. Enteromius foutensis sensu stricto is restricted to the Little Scarcies drainage in Guinea and northern Sierra Leone. Our study revealed two candidate species distinct from E. foutensis. One is likely a narrow endemic restricted to a small area in the Konkouré River basin; the other candidate species inhabits the upper Senegal and Gambie River drainages. How these patterns of diversity compare with other freshwater species from the Fouta Djallon highlands and the conservation status of these candidate species are also discussed.  相似文献   

4.

Aim

Biogeographical regions are the fundamental geographical units for grouping Earth's biodiversity. Biogeographical regionalization has been demonstrated for many higher taxa, such as terrestrial plants and vertebrates, but not in microbial communities. Therefore, we sought to test empirically whether microbial communities, or taxa, show patterns consistent with biogeographical regionalization.

Location

Within halite (NaCl) crystals from coastal solar salterns of western Europe, the Mediterranean and east Africa.

Time period

Modern (2006–2013).

Major taxa studied

Archaea.

Methods

Using high‐throughput Illumina amplicon sequencing, we generated the most high‐resolution characterization of halite‐associated archaeal communities to date, using samples from 17 locations. We grouped communities into biogeographical clusters based on community turnover to test whether these communities show biogeographical regionalization. To examine whether individual taxa, rather than communities, show biogeographical patterns, we also tested whether the relative abundance of individual genera may be indicative of a community's biogeographical origins using machine learning methods, specifically random forest classification.

Results

We found that the rate of community turnover was greatest over subregional spatial scales (< 500 km), whereas at regional spatial scales the turnover was independent of geographical distance. Biogeographical clusters of communities were either not statistically robust or lacked spatial coherence, inconsistent with biogeographical regionalization. However, we identified several archaeal genera that were good indicators of biogeographical origin, providing classification error rates of < 10%.

Main conclusions

Overall, our results provide little support for the concept of biogeographical regions in these extremophilic microbial communities, despite the fact that some taxa do show biogeographical patterns. We suggest that variable dispersal ability among the halite‐associated Archaea may disrupt biogeographical patterns at the community level, preventing the formation of biogeographical regions. This means that the processes that lead to the formation of biogeographical regions operate differentially on individual microbial taxa rather than on entire communities.  相似文献   

5.
Freshwater biodiversity is under ever increasing threat from human activities, and its conservation and management require a sound knowledge of species‐level taxonomy. Cryptic biodiversity is a common feature for aquatic systems, particularly in Australia, where recent genetic assessments suggest that the actual number of freshwater fish species may be considerably higher than currently listed. The freshwater blackfishes (genus Gadopsis) are an iconic group in south‐eastern Australia and, in combination with their broad, naturally divided distribution and biological attributes that might limit dispersal, as well as ongoing taxonomic uncertainty, they comprise an ideal study group for assessing cryptic biodiversity. We used a multigene molecular assessment including both nuclear (51 allozyme loci; two S7 introns) and matrilineal markers (cytb) to assess species boundaries and broad genetic substructure within freshwater blackfishes. Range‐wide examination demonstrates the presence of at least six candidate species across two nominal taxa, Gadopsis marmoratus and Gadopsis bispinosus. Phylogeographical patterns often aligned to purported biogeographical provinces but occasionally reflected more restricted and unexpected relationships. We highlight key issues with taxonomy, conservation, and management for a species group in a highly modified region. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 521–540.  相似文献   

6.
Genetic variation at allozyme and mitochondrialDNA loci was investigated in the Australianlungfish, Neoceratodus forsteri Krefft1870. Tissue samples for genetic analysis weretaken non-lethally from 278 individualsrepresenting two spatially distinct endemicpopulations (Mary and Burnett rivers), as wellas one population thought to be derived from ananthropogenic translocation in the 1890's(Brisbane river). Two of 24 allozyme lociresolved from muscle tissue were polymorphic.Mitochondrial DNA nucleotide sequence diversityestimated across 2,235 base pairs in each of 40individuals ranged between 0.000423 and0.001470 per river. Low genetic variation atallozyme and mitochondrial loci could beattributed to population bottlenecks, possiblyinduced by Pleistocene aridity. Limited geneticdifferentiation was detected among rivers usingnuclear and mitochondrial markers suggestingthat admixture may have occurred between theendemic Mary and Burnett populations duringperiods of low sea level when the drainages mayhave converged before reaching the ocean.Genetic data was consistent with theexplanation that lungfish were introduced tothe Brisbane river from the Mary river. Furtherresearch using more variable genetic loci isneeded before the conservation status ofpopulations can be determined, particularly asanthropogenic demands on lungfish habitat areincreasing. In the interim we recommend amanagement strategy aimed at conservingexisting genetic variation within and betweenrivers.  相似文献   

7.
Aim By dissolving natural physical barriers to movement, human‐mediated species introductions have dramatically reshuffled the present‐day biogeography of freshwater fishes. The present study investigates whether the antiquity of Australia's freshwater ichthyofauna has been altered by the widespread invasion of non‐indigenous fish species. Location Australia. Methods Using fish presence–absence data for historical and present‐day species pools, we quantified changes in faunal similarity among major Australian drainage divisions and among river basins of north‐eastern Australia according to the Sørensen index, and related these changes to major factors of catchment disturbance that significantly alter river processes. Results Human‐mediated fish introductions have increased faunal similarity among primary drainages by an average of 3.0% (from 17.1% to 20.1% similarity). Over three‐quarters of the pairwise changes in drainage similarity were positive, indicating a strong tendency for taxonomic homogenization caused primarily by the widespread introduction of Carassius auratus, Gambusia holbrooki, Oncorhynchus mykiss and Poecilia reticulata. Faunal homogenization was highest in drainages subjected to the greatest degree of disturbance associated with human settlement, infrastructure and change in land use. Scenarios of future species invasions and extinctions indicate the continued homogenization of Australian drainages. In contrast, highly idiosyncratic introductions of species in river basins of north‐eastern Australia have decreased fish faunal similarity by an average of 1.4%. Main conclusions We found that invasive species have significantly changed the present‐day biogeography of fish by homogenizing Australian drainages and differentiating north‐eastern river basins. Decreased faunal similarity at smaller spatial scales is a result of high historical similarity in this region and reflects the dynamic nature of the homogenization process whereby sporadic introductions of new species initially decrease faunal similarity across basins. Our study points to the importance of understanding the role of invasive species in defining patterns of present‐day biogeography and preserving the antiquity of Australia's freshwater biodiversity.  相似文献   

8.
We delineate local and regional biogeographic provinces that suggest patterns of species richness, and primary and secondary freshwater fish distributions along the Caribbean coast of Venezuela. We use presence‐absence records and classification and ordination models. Patterns at local and regional scales varied markedly such that primary species dominated humid drainages and secondary species dominated arid drainages or transition provinces. Species rich areas, and the presence of narrowly endemic species correlate with patterns of historical isolation and hydrographic refuges. Patterns of species distributions across arid drainages suggest that close proximity of coastal marine drainages allows dispersion and exchange of species. This pattern is particularly evident among secondary species. Hotspots of species richness and endemisms are identified and are recommended as priorities for conservation (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
The biogeography of lower Mesoamerican freshwater fishes   总被引:1,自引:0,他引:1  
Aim This paper examines the importance of regional processes in determining the patterns of distribution and diversity of lower Mesoamerican freshwater fishes. Location We focused our analyses on the lower Mesoamerican region, which we define to include all the rivers of Panama and Costa Rica. The geographic boundaries are the Colombian Choco to the south and Lake Nicaragua to the north. Methods We described the biogeographical provinces of lower Mesoamerica (LMA) using presence/absence data of primary and secondary LMA freshwater fishes. We conducted subsequent analyses at the spatial resolution of the biogeographical provinces and described patterns of community composition, species richness, endemism, range size, and the permeability of dispersal barriers between biogeographical provinces. Results This study represents the first attempt since that of W. A. Bussing in 1976 to investigate the biogeographical regions of Mesoamerica, and our analyses demonstrate increased regional complexity in biodiversity patterns relative to previous studies. Changes in community composition across LMA clearly highlight the importance of both extrinsic geological processes and intrinsic biological differences among freshwater fish species in shaping the dispersal and diversification histories of the LMA freshwater fish fauna. The influence of biology and geology is also exemplified by patterns of endemism and turnover between biogeographical provinces, which suggests that the relative importance of regional speciation and dispersal varies spatially across the LMA landscape. Finally, it would seem to follow that secondary freshwater fishes will have larger range sizes than primary fishes as a result of the increased salinity tolerance posited for the former group, and thus the increased probability of dispersal along coastlines. We did not, however, find a significant difference between the average range size of primary and secondary freshwater fishes, indicating that the putative differences in physiological tolerance to seawater between the two groups are not reflected in their distribution patterns at the scale of LMA. The geometric distribution of range size of LMA freshwater fishes suggests that dispersal of both primary and secondary freshwater fishes along coastlines must be infrequent. Main conclusion The observation that regional processes exerted a strong influence on the assembly and maintenance of LMA freshwater fish communities has important consequences for both theory and conservation. We suggest that large‐scale biogeographical analyses are required to illuminate the backdrop upon which local interactions play themselves out, supporting a top‐down approach to the study of biological diversity. Our results also identify areas of high conservation priority, providing a baseline for informing conservation strategies for freshwater fishes in LMA. We conclude by calling for conservation planning and action that acknowledges the importance that regional processes play in determining patterns of organismal diversity, and that incorporates these processes in strategies to conserve remnant biological diversity.  相似文献   

10.
Aim To uncover and describe patterns of biogeography of helminth parasites in freshwater fishes of Mexico, and to understand processes that determine them. Three predictions about host‐specificity, faunal exchange in transitional areas, and the biogeographical ‘core’ fauna, are evaluated, all of which follow from a fundamental hypothesis: that parasites show characteristic associations with particular host clades. The parasite fauna of the southern Mexican cichlids and of the fishes of the Mesa Central are examined as case studies that reflect Neotropical and Nearctic historical influences. Location The region covered in this study includes most of Mexico, with emphasis on six biogeographical areas: the Yucatán Peninsula (area 1), the Grijalva‐Usumacinta drainage (area 2), the Papaloapan and Pánuco drainages (area 3), the Balsas drainage (area 4), the Lerma‐Santiago drainage (area 5), and the Bravo drainage (area 6). Methods A parasite data base containing all the records of helminth parasites of freshwater fishes of Mexico was filtered to extract records of adult helminth parasites in freshwater fishes from the six biogeographical areas designated in this study. Jaccard's similarity coefficients and cluster analyses (using upgma ) were used to analyse the extent of faunal similarity between the designated biogeographical areas and between host (fish) families. Taxonomic composition of parasite assemblages in different host groups was also qualitatively compared from summary data. These data were used to test the three main predictions. Results To date, 184 species of helminths (120 as adults) have been recorded from 127 freshwater fishes in Mexico (almost 33% of the total fish diversity of Mexico). Of these parasite species, 69 are digenetic flukes, 51 are nematodes, 33 are monogeneans, 25 are tapeworms, and only six are acanthocephalans. The data and analyses from the six biogeographical areas corroborate the predictions that: (1) the adult parasite fauna is largely circumscribed by higher levels of monophyletic host taxa (families, orders, etc.), and that this pattern is independent of areas; (2) areas within a certain biogeographical region, and consequently with similar fish composition (e.g. areas 1, 2 and 3) have more similar parasite faunas compared to areas with less similar fish faunal composition; and (3) ‘core’ parasite faunas persist to some extent in transitional areas with limited host‐sharing. Main conclusions Helminth biodiversity in Mexican freshwater fishes is determined by the historical and contemporary biogeography of their hosts. Host lineage specificity, mainly at the level of the host family, appears to be an important factor in the distribution of the parasites. Most fish families (Characidae, Cichlidae, Pimelodidae, Ictaluridae, Catsotomidae, Goodeidae, Atherinidae) possess their own characteristic ‘core’ helminth fauna, with limited host‐sharing in transitional areas (e.g. areas 3 and 4). A re‐evaluation of the helminth fauna of Mexican cichlids questions the hypothesis that cichlids lost parasites during the colonization of Mexico from South America. The evidence supports the idea that they acquired new parasites by host switching, possibly from marine or brackish‐water percomorphs. In contrast, the parasite fauna of the Mesa Central remains enigmatic and reflects the region's history of endemicity with historical marine and Nearctic connections.  相似文献   

11.
Of all ecosystems, freshwaters support the most dynamic and highly concentrated biodiversity on Earth. These attributes of freshwater biodiversity along with increasing demand for water mean that these systems serve as significant models to understand drivers of global biodiversity change. Freshwater biodiversity changes are often attributed to hydrological alteration by water‐resource development and climate change owing to the role of the hydrological regime of rivers, wetlands and floodplains affecting patterns of biodiversity. However, a major gap remains in conceptualising how the hydrological regime determines patterns in biodiversity's multiple spatial components and facets (taxonomic, functional and phylogenetic). We synthesised primary evidence of freshwater biodiversity responses to natural hydrological regimes to determine how distinct ecohydrological mechanisms affect freshwater biodiversity at local, landscape and regional spatial scales. Hydrological connectivity influences local and landscape biodiversity, yet responses vary depending on spatial scale. Biodiversity at local scales is generally positively associated with increasing connectivity whereas landscape‐scale biodiversity is greater with increasing fragmentation among locations. The effects of hydrological disturbance on freshwater biodiversity are variable at separate spatial scales and depend on disturbance frequency and history and organism characteristics. The role of hydrology in determining habitat for freshwater biodiversity also depends on spatial scaling. At local scales, persistence, stability and size of habitat each contribute to patterns of freshwater biodiversity yet the responses are variable across the organism groups that constitute overall freshwater biodiversity. We present a conceptual model to unite the effects of different ecohydrological mechanisms on freshwater biodiversity across spatial scales, and develop four principles for applying a multi‐scaled understanding of freshwater biodiversity responses to hydrological regimes. The protection and restoration of freshwater biodiversity is both a fundamental justification and a central goal of environmental water allocation worldwide. Clearer integration of concepts of spatial scaling in the context of understanding impacts of hydrological regimes on biodiversity will increase uptake of evidence into environmental flow implementation, identify suitable biodiversity targets responsive to hydrological change or restoration, and identify and manage risks of environmental flows contributing to biodiversity decline.  相似文献   

12.
Rivers and lake systems in the southern cone of South America have been widely influenced by historical glaciations, carrying important implications for the evolution of aquatic organisms, including prompting transitions between marine and freshwater habitats and by triggering hybridization among incipient species via waterway connectivity and stream capture events. Silverside fishes (Odontesthes) in the region comprise a radiation of 19 marine and freshwater species that have been hypothesized on the basis of morphological or mitochondrial DNA data to have either transitioned repeatedly into continental waters from the sea or colonized marine habitats following freshwater diversification. New double digest restriction‐site associated DNA data presented here provide a robust framework to investigate the biogeographical history of and habitat transitions in Odontesthes. We show that Odontesthes silversides originally diversified in the Pacific but independently colonized the Atlantic three times, producing three independent marine‐to‐freshwater transitions. Our results also indicate recent introgression of marine mitochondrial haplotypes into two freshwater clades, with more recurring instances of hybridization among Atlantic‐ versus Pacific‐slope species. In Pacific freshwater drainages, hybridization with a marine species appears to be geographically isolated and may be related to glaciation events. Substantial structural differences of estuarine gradients between these two geographical areas may have influenced the frequency, intensity and evolutionary effects of hybridization events.  相似文献   

13.
Aim The ‘taxonomic impediment’ has led to a growing trend in ecology and conservation biology to use operational surrogates for species within the context of a particular research project. Because such ‘parataxonomic’ classifications are typically spatially limited in scope, we examined the influence of increasing spatial scale on the congruence of two such approaches with a more traditional taxonomic classification. Location Sturt National Park, north‐western New South Wales, Australia. Methods Specimens of two ant genera, Camponotus and Rhytidoponera, were classified by three independent methods. The ‘parataxonomic’ classification assigned specimens to morphospecies without specialist taxonomic expertise; the ‘taxonomic’ classification assigned specimens to either described species or, where this was not possible, to operational taxonomic units (OTUs) using specialist taxonomic expertise; the ‘phenetic’ classification assigned specimens to putative species using a K‐means partitioning algorithm on basic morphometric data. Specimens of each genus were pooled into ‘assemblages’, which were defined at multiple spatial scales using a nested sampling design. Congruence in the interspecimen relationships of the different classifications was tested for each assemblage using pair‐wise Mantel correlations. Results Classification congruence tended to decrease with increasing spatial scale. There were, however, clear differences between the genera. Parataxonomic–taxonomic congruence was consistently greater for Camponotus, while phenetic–taxonomic congruence showed the opposite pattern. Conclusions Observed patterns in classification congruence are attributed to two principal causes: (i) within‐species morphological variation, including ecotypic variation in Rhytidoponera and caste polymorphism in Camponotus; and (ii) a limit to the morphological similarity of potentially competing species at small spatial scales. Regardless of cause, the decline in agreement as the spatial scale of observation is increased has important implications for the measurement of biodiversity, particularly when comparing samples over regional, continental, and global scales.  相似文献   

14.
Aim To develop a systematic and generic framework for biogeographical regionalizations that can assist in reconciling different approaches and advance their application as a research tool. Location The Australian continent is used as a case study. Methods A review of approaches to biogeographical regionalization revealed two basic methodologies: the integrated survey method and the parametric approach. To help reconcile these different approaches, we propose a simple, four‐step, flexible and generic framework. (1) Identification of the thematic foci from the three main themes (composition and evolutionary legacy; ecosystem drivers; ecosystem responses). (2) Proposal of a theory defining the purpose. (3) Application of a numeric agglomerative classification procedure that requires the user to make explicit assumptions about attributes, the number of classification groups, the spatial unit of analysis, and the metric for measuring the similarity of these units based on their attribute values. (4) Acquisition of spatial estimates of the required input attribute data. For this case study, an agglomerative classification strategy was applied using the functions within patn 3.03, a software package facilitating large‐scale, multivariate pattern analysis. The input data to the classifications were continental coverages of 11 environmental variables and three indices of gross primary productivity stored at a grid cell resolution of c. 250 m. The spatial units of analysis were surface hydrological units (SHU), which were derived from a continental digital elevation model based on the contributing areas to stream segments or the area draining into a local sink where there is no organized drainage. The Minkowski series (Euclidean distance) was selected as the association measure to allow weightings to be applied to the variables. Results Two new biogeographical regionalizations of the Australian continent were generated. The first was an environmental domain classification, based on 11 climatic, terrain and soil attributes. This regionalization can be used to address hypotheses about the relationship between environmental distance and evolutionary processes. The classification produced 151 environmental groups. The second was a classification of primary productivity regimes based on estimates of the gross primary productivity of the vegetation cover calculated from moderate resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) data and estimates of radiation. This classification produced 50 groups, and can be used to examine hypotheses concerning productivity regimes and animal life‐history strategies. The productivity classification does not capture all the properties related to biological carrying capacity, process rates and differences in the characteristic biodiversity of ecosystems. Some of these ecologically significant properties are captured by the environmental domain classification. Main conclusions Our framework can be applied to all terrestrial regions, and the necessary data for the analyses presented here are now available at global scales. As the spatial predictions generated by the classifications can be tested by comparison with independent data, the approach facilitates exploratory analysis and further hypothesis generation. Integration of the three themes in our framework will contribute to a more comprehensive approach to biogeography.  相似文献   

15.
Genetic markers are widely used to define and manage populations of threatened species based on the notion that populations with unique lineages of mtDNA and well‐differentiated nuclear marker frequencies should be treated separately. However, a danger of this approach is that genetic uniqueness might be emphasized at the cost of genetic diversity, which is essential for adaptation and is potentially boosted by mixing geographically separate populations. Here, we re‐explore the issue of defining management units, focussing on a detailed study of Galaxiella pusilla, a small freshwater fish of national conservation significance in Australia. Using a combination of microsatellite and mitochondrial markers, 51 populations across the species range were surveyed for genetic structure and diversity. We found an inverse relationship between genetic differentiation and genetic diversity, highlighting a long‐term risk of deliberate isolation of G. pusilla populations based on protection of unique lineages. Instead, we adopt a method for identifying genetic management units that takes into consideration both uniqueness and genetic variation. This produced a management framework to guide future translocation and re‐introduction efforts for G. pusilla, which contrasted to the framework based on a more traditional approach that may overlook important genetic variation in populations.  相似文献   

16.
17.
Aim The phylogeography of Rhabdochona lichtenfelsi, a nematode parasite specific to endemic goodeids in Mexico, is used to infer the biogeographical history of fragmentation and recent evolution of the Mesa Central drainages. Geological history of the west‐central region of Mexico suggests that extant freshwater basins are the result of different vicariant events that fragmented ancient watercourses and lakes within the Mesa Central. Location Major freshwater river basins of the Mesa Central, Mexico: Ameca, Cotija, Lerma, Rio Verde, Panuco, and lakes Cuitzeo and Zacapu. Methods Haplotype diversity and phylogeographical structure of 10 populations of R. lichtenfelsi, sampled from the complete range of this species, were analysed with partial sequences of cytochrome c oxidase subunit I (456 bp). Analyses performed included phylogenetic tree estimation methods (neighbour‐joining, maximum parsimony and maximum likelihood), genetic diversity, distance and structure estimates, and nested clade analysis. Results High overall haplotype diversity, unique haplotypes, and strongly structured populations were found in the basins sampled. Three phylogenetically and demographically identifiable clades were recovered. These clades fit an isolation‐by‐distance model. Significant population expansion was observed for two clades and for the entire population. Time of divergence was estimated as 1.0 and 0.84 Ma for the different clades. Main conclusions The distribution of R. lichtenfelsi haplotypes does not correspond to the present distribution of the basins of Mesa Central, but instead reflects the distribution of those basins during a recent geological period (Pleistocene). While our current knowledge of the evolution and geographical relationships of the Mesa Central basins comes from studies of freshwater fish encompassing a more ancient history, our results suggest that, during the past million years, old basins and connections existed where today isolated freshwater bodies stand, thus unravelling a novel biogeographical history for the Mesa Central of Mexico.  相似文献   

18.
19.
Refugia are critical for the maintenance of biodiversity during the periods of Quaternary climatic oscillations. The long‐term persistence of refugial populations in a large continuous refugium has resulted in a homogenous pattern of genetic structure among populations, while highly structured evolutionary lineages characterize the restriction of refugial populations to smaller subrefugia. These mechanisms have resulted in the identification of hot spots of biodiversity within putative glacial refugia. We studied phylogeography of Potamon ibericum (Brachyura: Potamidae) in the drainages of the western Caucasus biodiversity hot spot (i.e., Colchis and the Caucasus) to infer spatial genetic structure and potential refugia for a freshwater crab in this region. These areas have traditionally considered as a refugium due to the presence of Tertiary relict species. We integrated population genetic data and historical demographic analysis from cytochrome oxidase subunit I sequences and paleoclimatic data from species distribution modeling (SDM). The results revealed the lack of phylogeographic structure and provided evidence for demographic expansion. The SDM presented a rather homogenous and large refugium that extended from northeast Turkey to Colchis during the last glacial period. In contrast to these findings, previous phylogeographic study on P. ibericum of the eastern Caucasus biodiversity hot spot (i.e., Hyrcania) identified multiple independent refugia. By combining these results, we explain the significance of this important western Palearctic hot spot of biological diversity in shaping the geographic distribution of intraspecific genetic diversity in a freshwater taxon.  相似文献   

20.
Many single‐species freshwater phylogeographic studies have been carried out in south‐east Queensland; however comparative phylogeography requires multiple lines of evidence to infer deep, significant relationships between landscape and biota. The present study aimed to test conclusions resulting from single taxon studies in a multispecies comparative framework: (1) how influential are river basins in the genetic structure of freshwater species; (2) are there biogeographic frontiers between groups of basins; and (3) could deep intraspecific lineages be explained by a single event? New and existing data from 33 freshwater species (23 fishes and 10 crustaceans) were combined, and both standard single‐species analyses (haplotype networks, genetic distances, ΦST) and multispecies methods (hierarchical ABC) were carried out for 1814 sequences from eight basins. More than half of the species displayed a high phylogeographic structure and contained at least two distinct lineages. Almost all of the lineage divergences displayed an element of north/south geographic breaks, with the most influential boundary being between the Mary and Brisbane rivers. Of the 11 basin‐pair multispecies coalescent analyses, four implied a single divergence as being most likely. A regional analysis of deep lineages within 16 taxon‐pairs resulted in a strongly supported inference of a single divergence, probably dating to the Pleistocene. Basin boundaries are a key determinant of phylogeographic patterns for most of these freshwater species, although the specific biogeographic relationship between basins often varies depending on the species. There are a number of influential biogeographic frontiers, with the Brisbane‐Mary being the most important. The finding that a single event may be responsible for multiple deep lineages across the region implies that a highly influential climate change event may have been detected. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 554–569.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号