首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The time course of the rate of the glycolysis of human erythrocytes and of some metabolites were determined before and after rapid deoxygenation at constant intracellular pH. For this purpose stripped deoxygenated haemoglobin was used as a rapid oxygen acceptor. Deoxygenation causes an increase of the glycolytic rate by 26%. Glucose 6-phosphate is decreased while the adenine nucleotides and 2,3-bisphosphoglycerate remain constant. Fructose 1,6-bisphosphate and the triose phosphates decrease transiently before rising. The data can be explained by increased binding of phosphocompounds to deoxygenated as compared with oxygenated haemoglobin. Thereby the control enzymes hexokinase and phosphofructokinase are influenced. It is concluded that under physiological conditions changes in the oxygenation state of haemoglobin per se alter the glycolytic rate.  相似文献   

2.
3.
4.
5.
6.
7.
Effect of oxygen tension on glycolysis in human erythrocytes   总被引:1,自引:0,他引:1  
  相似文献   

8.
The experiments were carried out with washed human erythrocytes in order to study the effects of dibutyryl-cAMP (DB-cAMP) on glycolysis. 5 mM DB-cAMP significantly increases glucose consumption and lactate production in incubated erythrocytes. The cross-over plot of glycolytic intermediates shows that increased glycolysis is probably the result of activation of phosphofructokinase by DB-cAMP. Under the same condition DB-cAMP significantly protects the 2,3-diphosphoglycerate level in incubated erythrocytes.  相似文献   

9.
10.
The full time courses of some important metabolites of the glycolysis of human erythrocytes are reported following pH-shifts from pH 7.4 to 8.1 and from 8.1 to 6.9. The regulatory enzymes which are affected by the pH-transitions have been identified by computer simulation using a mathematical model of the erythrocyte glycolysis. It is concluded that in the transition to pH 8.1 the hexokinase-phosphofructokinase system is activated and the pyruvate kinase is inhibited. At pH 6.9 the hexokinase-phosphofructokinase system and the bisphosphoglycerate mutase are inhibited whereas the non-glycolytic ATP-consuming processes seem to be activated.  相似文献   

11.
The ATP content in human erythrocytes depleted without glucose falls down to half of the initial value within 2-3 hours and reaches practically zero within more than 10 hours. The ADP content increases 2-3-fold during the 1st hour after depletion and then slowly decreases. The AMP content increases 10-fold during several hours, but the rate of this process constantly decreases. The adenylate pool decreases at a constant rate ranging from 0.13 to 0.25 mmol/l cell. h; this is accompanied by accumulation of IMP. Addition of glucose to depleted erythrocytes results in partial recovery of the ATP level within 1-2 hours. The sooner glucose addition after the depletion, the greater the recovery. Simultaneously the ADP and AMP levels drastically decrease to new constant values. The decline of the adenylate pool ceases and the rate of IMP accumulation increases. Normally, the [ATP]/adenylate pool ratio lies within the small interval 0.85-0.94 irrespective of significant individual differences in the absolute values of [ATP]. This ratio is decreased during depletion and restored to the initial value after glucose addition. The mass-action ratio of the adenylate kinase reaction changes greatly during depletion and restoration of erythrocyte ATP.  相似文献   

12.
13.
Lactate output from the alpha and beta anomers of glucose was measured in intact human erythrocytes at 37 degrees C; and glucose anomer phosphorylation, in human erythrocyte homogenates. The rates of both glucose metabolism (lactate output) and phosphorylation were higher in the presence of beta-D-glucose as distinct from alpha-D-glucose at three glucose concentrations used (2, 5, and 10 mM). Thus, the v beta/v alpha ratios of metabolism and phosphorylation of glucose at 2 mM were 1.24 and 1.22, respectively. The results indicate that the beta preference of hexokinase, a rate-limiting enzyme in glycolysis, is reflected in beta-preferential glycolysis.  相似文献   

14.
15.
16.
Changes in glycolysis control characteristics (dependence of glycolysis rate on ATP concentration) in erythrocytes were studied during the storage of donors blood with glucose citrate hemoconservant. During the first two weeks of storage the shape of glycolysis control characteristics in the erythrocytes could be shown to remain practically unchanged, which was represented by a bell-shaped curve such as in fresh erythrocytes. During this period the physiological point of glycolysis will move along the glycolysis control characteristics towards the maximum of the curve. Once the maximum of the physiological point has been reached, the shape of the curve can be seen to change. The maximum on the curve becomes less evident, moving down and to the left from its initial position. These changes will occur after two to four weeks of storage. In some cases the maximum on glycolysis control characteristics will disappear at the latest stages of storage. The changes observed will occur in blood of different donors at different moments of storage. The nature of the changes observed and their influence on erythrocyte viability are discussed.  相似文献   

17.
Binding of lactoferrin (Lf) to its membrane receptors requires an electron for the reduction of Fe(3+)LF to Fe(2+)LF. It is possible that glyceraldehyde -3-phosphate dehydrogenase, a glycolytic enzyme part of the erythrocyte membrane, delivers that electron. Then Lf, obtaining an electron from the coenzyme NADH, might stimulate glycolysis, which requires the oxidised state of the coenzyme NAD+. Such possibility is supported by the finding that another extracellular e- acceptor--potassium ferricyanide activates glycolysis by the similar mechanism. Present results show that ferricyanide inhibited the specific 59Fe-lactoferrin binding to its erythrocyte membrane receptors. It may be assumed that ferricyanide competes with lactoferrin for an electron which leads to decrease of the binding of 59Fe-lactoferrin to its receptors. Lactoferrin (50 and 100 nM), similar to ferricyanide, increased the accumulation of lactate (respectively by 25% and 30%). These results support the assumption that ferricyanide and lactoferrin are final acceptors of a common electron transport chain connected with the regulation of glycolysis. We established an antioxidative effect of lactoferrin on erythrocytes, which was expressed as: a) an influence on content and on activity of intracellular antioxidants--namely an enhancement of the content of reduced glutathione; b) a decreased content both of products of lipid peroxidation (thiobarbituric acid reactive substances) and hemolysis under normal conditions and oxidative stress. Lactoferrin is capable to bind metal ions and thus to block their catalytic participation in the oxidative disturbances of the membrane. In most of our experiments there were no metal ions in the incubation mixtures (except those stimulating oxidative stress). Our results showed that Lf limited both the generation of thiobarbituric acid reactive substances and hemolysis in the absence of metal ions in the media, as well as in their presence. These facts suggest that probably the antioxidative property of lactoferrin is glycolysis stimulation, leading to increased formation of ATP, which is necessary to maintain the ion gradient, membrane potential and morphology of the erythrocyte.  相似文献   

18.
19.
20.
Regulation of intracellular pH in human neutrophils   总被引:12,自引:4,他引:12       下载免费PDF全文
The intracellular pH (pHi) of isolated human peripheral blood neutrophils was measured from the fluorescence of 6-carboxyfluorescein (6-CF) and from the equilibrium distribution of [14C]5,5-dimethyloxazolidine -2,4-dione (DMO). At an extracellular pH (pHo) of 7.40 in nominally CO2-free medium, the steady state pHi using either indicator was approximately 7.25. When pHo was suddenly raised from 7.40 to 8.40 in the nominal absence of CO2, pHi slowly rose by approximately 0.35 during the subsequent hour. A change of similar magnitude in the opposite direction occurred when pHo was reduced to 6.40. Both changes were reversible. Intrinsic intracellular buffering power, determined by using graded pulses of CO2 or NH4Cl, was approximately 50 mM/pH over the pHi range of 6.8-7.9. The course of pHi obtained from the distribution of DMO was followed during and after imposition of intracellular acid and alkaline loads. Intracellular acidification was brought about either by exposing cells to 18% CO2 or by prepulsing with 30 mM NH4Cl, while pHo was maintained at 7.40. In both instances, pHi (6.80 and 6.45, respectively) recovered toward the control value at rates of 0.029 and 0.134 pH/min. These rates were reduced by approximately 90% either by 1 mM amiloride or by replacement of extracellular Na with N-methyl-D-glucamine. Recovery was not affected by 1 mM SITS or by 40 mM alpha-cyano-4-hydroxycinnamate (CHC), which inhibits anion exchange in neutrophils. Therefore, recovery from acid loading is probably due to an exchange of internal H for external Na. Intracellular alkalinization was achieved by exposing the cells to 30 mM NH4Cl or by prepulsing with 18% CO2, both at a constant pHo 7.40. In both instances, pHi, which was 7.65 and 7.76, respectively, recovered to the control value. The recovery rates (0.033 and 0.077 pH/min, respectively) were reduced by 80-90% either by 40 mM CHC or by replacement of extracellular Cl with p-aminohippurate (PAH). SITS, amiloride, and ouabain (0.1 mM) were ineffective.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号