首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A survey of over 250 representative taxa in the Umbelliferae has shown that sulphates only accumulate in three genera, Ammi, Daucus and Oenanthe. The presence of quercetin, rhamnocitrin, rhamnetin and isorhamnetin 3-sulphate in Ammi visnaga serves to distinguish it from the related A. majus which lacks sulphates. In Daucus carota leaf, the 7-and 4′-sulphates of luteolin both occur; the two characters are polymorphic and appear to be present more frequently in North temperate than in South temperate populations. Oenanthe is the only genus where sulphates are found abundantly; they occur in 7 of 9 species surveyed. In addition to the known isorhamnetin 3sulphate of O. stolonifera, quercetin 3-sulphate and luteolin 7-sulphate were identified for the first time in the genus. The synthesis of various kaempferol and quercetin sulphates is described.  相似文献   

2.
Flavonoid patterns in leaves of the gramineae   总被引:1,自引:0,他引:1  
In a leaf survey of 274 species from 121 genera of the Gramineae, flavone C-glycosides and tricin were found to be the major flavonoids in 93% of the samples. By contrast, apigenin and luteolin O-glycosides were comparatively rare, as were the flavonols, kaempferol and quercetin. In only one species, Rottboellia exaltata were flavonols the sole flavonoids. 7.3′.4′-Trihydroxyflavone, which has been detected in the Juncaceae, was found in 3 of 5 samples of the species Bothriochloa bladhii. Flavonoid sulphates were present in 16% of the species examined. While in most of these plants tricin glycosides were conjugated with sulphate, in Paspalum convexum quercetin mono- and di-sulphates and 1-caffeylglucose sulphate were identified. Flavonoid sulphates are present in the tropical-subtropical subfamilies: Panicoideae (in 18% of species). Chloridoideae (15%) and Arundinoideae (40%) but were not found at all in tribes of the cool temperate regions. Proanthocyanidins were found in only 3% of the species surveyed. The flavan-4-ol, luteoforol and its apigenin analogue were detected only in the subfamilies Panicoideae and Chloridoideae, where they occured in 12 and 6% of species respectively.  相似文献   

3.
Anthocyanins, variously identified in inflorescence, fruit, leaf or petiole of 59 representative species of the Araccae, are of a simple type. The most common pigment is cyanidin 3-rutinoside, while pelargonidin 3-rutinoside and cyanidin 3-glucoside are regularly present. Two rare pigments are: cyanidin 3-gentiobioside in Anchomanes and Rhektophyllum, both in the subfamily Lasioideae; and delphinidin 3-rutinoside in Schismatoglottis concinna. In a leaf survey of 144 species from 58 genera, flavone C-glycosides (in 82%) and proanthocyanidins (in 35–45%) were found as the major flavonoids. In the subfamily Calloideae, subtribe Symplocarpeae, flavonols replace glycoflavones as the major leaf components but otherwise flavonols are uncommon in the family (in 27% of the sample) and more usually co-occur with flavone C-glycosides. Two new flavonol glycosides were characterized from Lysichiton camtschatcense: kaempferol 3-(6-arabinosylgalactoside)and kaempferol 3-xylosylgalactoside. Simple flavones, luteolin and chrysoeriol (in 6%) were found only in the subtribes Arinae and Cryptocoryninae, subfamily Aroideae. Flavonoid sulphates were identified in only four taxa: glycoflavone sulphates in two Culcasia species and Philodendron ornatum and a mixture of flavone and flavonol sulphates in Scindapsus pictus. Caffeic ester sulphates were more common and their presence in Anthurium hookeri was confirmed. These results show that the Araceae are unusual amongst the monocots in their simple and relatively uniform flavonoid profile; no one subfamily is clearly distinguished, although at tribal level some significant taxonomic patterns are observed. The best defined groups are the subfamilies Lasioideae and Monsteroideae, and the tribes Symplocarpeae and Arophyteae, and the subtribe Arinae. The greatest chemical diversity occurs in Anthurium and Philodendron, but this may only reflect the fact that these are the two largest genera in the family. The origin and relationship of the Araccae to other monocot groups are discussed in the light of the flavonoid evidence.  相似文献   

4.
Flavonoid surveys of hydrolysed and direct leaf extracts of fifty two cocosoid palms revealed tricin, glycoflavones, proanthocyanidins, quercetin, flavonoid sulphates, isorhamnetin, and luteolin as regular constituents; present in 87, 77, 53, 47, 36, 26 and 26% of species, respectively. Kaempferol was found in 15% of the sample and apigenin in only one taxon ofAttalea. Attalea andSyagrus were chemically heterogeneous groups. The flavonoid evidence suggested the removal ofPolyandrocosus from theAllagoptera unit, the recognition of twoMaximiliana species, the separation ofArecastrum andArikuryroba fromSyagrus and thatJubaea was closer toButia thanJubaeopsis. Five morphologically similar Central AmericanScheelea species were distinguished by their flavonoid profiles.  相似文献   

5.
During a chemosystematic survey of 38 representative species of the Juncaceae for leaf and stem flavonoids, the 5-methyl ether of luteolin was discovered for the first time in plants. It occurs both free and as the 7-glucoside; its identity was confirmed by synthesis. Flavone sulphates were also found in the family and the 7-glucosidesulphates of luteolin and chrysoeriol were characterised for the first time. 7,3′,4′-Trihydroxyflavone and its 7-glucoside, not previously reported in the monocotyledons, were found in three species. The presence of luteolin 5-methyl ether or its glucoside in 70% of the species surveyed serves to distinguish the Juncaceae from the morphologically related Centrolepidaceae, Restionaceae and Thurniaceae. Flavone C-glycosides, common in grasses and sedges, were found only in Prionium, a genus which on anatomical grounds is anomalous in the Juncaceae. Among other phenolics detected during the survey, the uncommon 7,8-dihydroxycoumarin, daphnetin, was identified in Juncus effusus and its 8-methyl ether in four Luzula species. Taken together, these chemical findings show that the Juncaceae are very distinctive in their phenolic pattern and confirm the correctness of assigning them an isolated position in a separate order, the Juncales. The results indicate that the Juncaceae are chemically specialized, in spite of the facts that the family has been regarded as ancestral to the Cyperaceae and Gramineae and that they have been assigned a low advancement index by Sporne.  相似文献   

6.
A survey of flavonoids in the leaves of 81 species of the Zingiberales showed that, while most of the major classes of flavonoid are represented in the order, only two families, the Zingiberaceae and Marantaceae are rich in these constituents. In the Musaceae (in 9 species), Strelitziaceae (in 8 species) and Cannaceae (1 of 2 species) flavonol glycosides were detected in small amount and in the Lowiaceae no flavonoids were fully identified. In the Zingiberaceae kaempferol (in 22%), quercetin (72%) and proanthocyanidins (71%) are distributed throughout the family. The two subfamilies of the Zingiberaceae may be distinguished by the presence of myricetin (in 26%), isorhamnetin (10%) and syringetin (3%) in the Zingiberoideae and of flavone C-glycosides (in 86% of taxa) in the Costoideae. A number of genera have distinctive flavonol profiles: e.g. Hedychium species have myricetin and quercetin. Roscoea species isorhamnetin and quercetin and Alpinia species kaempferol and quercetin glycosides. A new glycoside, syringetin 3-rhamnoside was identified in Hedychium stenopetalum. In the Zingiberoideae flavonols were found in glycosidic combination with glucuronic acid, rhamnose and glucose but glucuronides were not detected in the Costoideae or elsewhere in the Zingiberales. The Marantaceae is chemically the most diverse group and may be distinguished from other members of the Zingiberales by the occurrence of both flavone O- and C-glycosides and the absence of kaempferol and isorhamnetin glycosides. The distribution of flavonoid constituents within the Marantaceae does not closely follow the existing tribai or generic limits. Flavonols (in 50% of species). flavones (20%) and flavone C-glycosides (40%) are found with similar frequency in the two tribes and in the genera Calathea and Maranta both flavone and flavonol glycosides occur. Apigenin- and luteolin-7-sulphates and luteolin-7,3′-disulphate were identified in Maranta bicolor and M. leuconeura var. kerchoveana and several flavone C-glycosides sulphates in Stromanthe sanguinea. Anthocyanins were identified in those species with pigmented leaves or stems and a common pattern based on cyanidin-and delphinidin-3-rutinosides was observed throughout the group. Finally the possible relationship of the Zingiberales to the Commelinales, Liliales, Bromeliales and Fluviales is discussed.  相似文献   

7.
In a leaf flavonoid analysis of six Fuchsia species and seven Fuchsia hybrids, flavonols were found to be abundant in all taxa except F. procumbens. Flavone glycosides were found in only three species: luteolin 7-glucoside in F. splendens; and luteolin and apigenin 7-glucuronides and 7-glucuronidesulphates, tricin 7-glucuronidesulphate and diosmetin 7-glucuronide from one or both of the New Zealand species F. procumbens and F. excorticata. Luteolin 7- glucuronidesulphate is reported for the first time. Other less common phenolics identified include the flavanone, eriodictyol 7-glucoside from F. excorticata, a galloylglucose from F. triphylla, and a galloylglucosesulphate present in all taxa. Eight of the flavonoid glycosides proved useful as marker substances for particular Fuchsia species: quercetin 3- rhamnoside, 3-glucuronide and 3-rutinoside for F.fulgens; quercetin and kaempferol 3-galactosides for F. boliviana var. luxurians; diosmetin 7-glucuronide for F. excorticata and apigenin 7-glucuronide and 7-glucuronidesulphate for F. procumbens. The chemical results on the hybrids support the view that the cultivar ‘Mary’ is a hybrid of F. boliviana var. luxurians and F. triphylla and that both F.fulgens and F. triphylla are involved as parents of the cultivars ‘Koralle’ and ‘Traudchen Bondstedt’.  相似文献   

8.
A survey of 170 Australian species of Cyperaceae belonging to 35 genera has confirmed that this family has a highly characteristic flavonoid pattern in leaf and inflorescence. Aurone pigments, the most distinctive family constituents, were found in the leaves of 25% of the sample and in the inflorescences of 40%. Sulphuretin was found for the first time in the family, in Carex appressa. Flavones, such as tricin and luteolin, are very common; in addition, a variety of methyl ethers were detected. Luteolin 5-methyl ether was found in further genera, while luteolin 7-methyl ether, diosmetin and acacetin were detected for the first time in the Cyperaceae. Flavonols and their methyl ethers occurred in over one-third of the species, particularly in the leaves, being especially well represented in the genera Fuirena, Gahnia, Lepidosperma and Mesomelaena. Myricetin was found only twice, in two Baumea species. The 3-desoxyanthocyanidin carexidin was found in the inflorescences of eight species, i.e. in 5% of the sample. Taxonomically, the results are mainly of interest at the generic and specific level, where the patterns sometimes show useful correlations with morphology. At the tribal level, the Sclerieae are the most distinctive, with higher than average frequency of flavone C-glycosides, flavonols, proanthocyanidins and aurones, and lower than average frequency of flavones.  相似文献   

9.
《Phytochemistry》1987,26(8):2281-2284
From the aerial parts of the maritime plantLippia nodiflora, 15 flavonoids, 3 flavone aglycones and 12 new flavone sulphates, have been isolated and identified. The new flavone sulphates are mono- and disulphates of nepetin, jaceosidin, hispidulin, 6-hydroxyluteolin and nodifloretin present as the sodium salts. These sulphates are the only flavone conjugates detected in this plant. Flavone trisulphates are additionally present in populations of this species from Malaysia and Saudi Arabia, but lack of plant material prevented their complete characterization. Analysis of the closely related speciesLippia canescens showed that it has the same flavonoid pattern. By contrast, a third speciesL. triphylla showed a flavonoid pattern lacking flavonoid sulphates, but characterized by the presence of 7-glucuronylglucosides of luteolin, diosmetin and apigenin. This is the first finding of flavonoid sulphates in the Verbenaceae.  相似文献   

10.
Thirty-three Sonchus, one Embergeria, one Babcockia and five Taeckholmia species were surveyed for their phenolic constituents. The coumarins scopoletin and aesculetin were found as major constituents of Embergeria, Babcockia and Taeckholmia species, and in lesser amount in some Sonchus species. Six flavone glycosides were identified: apigenin 7-glucuronide, apigenin 7-rutinoside, luteolin 7-glucoside, luteolin 7-glucuronide, luteolin 7-rutinoside and luteolin 7-glucosylglucuronide and the systematic significance of their distribution is discussed.  相似文献   

11.
A chemosystematic study of the subgenus Oporinia of the genus Leontodon (Asteraceae) was performed, using flavonoids and phenolic acids in the flowerheads as diagnostic characters. A total of 44 samples from nine different Oporinia taxa were analyzed. Five luteolin-derivatives (luteolin, luteolin 7-O-β-d-gentiobioside, luteolin 7-O-β-d-glucoside, luteolin 7-O-β-d-glucuronide, and luteolin 4′-O-β-d-glucoside) and four caffeic acid derivatives (caffeoyl tartaric acid, chlorogenic acid, cichoric acid, and 3,5-dicaffeoylquinic acid) were identified in crude extracts by means of HPLC retention times, on-line UV spectra and on-line MS spectra. Quantification of these compounds was performed by HPLC, using quercetin as internal standard. The data obtained were processed by Principal Component Analysis, resulting in the formation of five different clusters. These clusters were taxonomically interpretable and are in good agreement with the morphologically based system of the genus Leontodon.  相似文献   

12.
In a leaf survey of 142 species from 75 genera of the Orchidaceae, flavone C-glycosides (in 53%) and flavonols (in 37 %) were found to be the most common constituents. However, since these compounds are not found uniformly and their distribution shows a strong correlation with plant geography, it is not possible to represent the Orchidaceae by a single flavonoid profile. Thus, flavone C-glycosides are most common in tropical and subtropical species of the Epidendroid and Vandoid tribes (in 63%) and flavonol glycosides are more characteristic of temperate species of the Neottioid tribes (in 78%). By contrast 6-hydroxyflavones (in 6 species), luteolin (in 2 species) and tricin as the 5-glucoside (in 1 species) are all rare. Three new glycosides were characterised: scutellarein 6-methyl ether 7-rutinoside from Oncidium excavatum and O. sphacelatum, pectolinarigenin 7-glucoside from 0. excavatutn and Eria javanica, and luteolin 3′,4′-diglucoside from Listera ovata. The xanthones, mangiferin and isomangiferin were found in Mormolyca ringens, Maxillaria aff. luteo-alba and 5 Polystachya species and a mangiferin sulphate tentatively identified in P. nyanzensis. Other unusual phenolic constituents include 6,7-methylenedioxy- and 6,7-dimethoxycoumarins from Dendrobium densiflorum and D. farmeri, formed by the rearrangement during the extraction process from the corresponding O-glucosyloxycinnamic acids. The origin and relationship of the Orchidaceae to other monocot groups are discussed in the light of the flavonoid evidence.  相似文献   

13.
1. Heparan sulphates from normal 3T3 fibroblasts are association-prone as indicated by their affinity for agarose gels substituted with cognate heparan sulphate species. Heparan sulphates from SV40-transformed or polyoma-virus-transformed cells have no affinity for the same gels. 2. Heparan sulphates from the medium, the pericellular and intracellular pools of normal, SV40-transformed and polyoma-transformed 3T3 cells were separated into four subfractions (HS1–HS4) by ion-exchange chromatography. In general, HS1–HS3 were found in cell-derived heparan sulphates, whereas HS3–HS4 were present in the medium. The heparan sulphates from transformed cells were more heterogeneous and of lower charge density than those from the normal counterpart. 3. Degradations via periodate oxidation/alkaline elimination yielded the oligomers glucosamine-(hexuronate–glucosamine)n-R with n=1–5 and a large proportion of N-sulphate groups. There was a large contribution of fragments n=4–5 from heparan sulphates of normal cells. These fragments were less common in low-sulphated heparan sulphates of transformed cells. In the case of medium-drived heparan sulphates all species had a low content of fragments n=4–5. 4. The size distribution of (glucuronate–N-acetylglucosamine)n regions was assessed after deaminative cleavage. It was broad and ranged from n=1–10 for all heparan sulphate species. In the case of medium-derived heparan sulphates there were distinct differences between normal and transformed cells. In the latter chains the N-acetyl-rich segments were both shorter and longer than in the normal case. The shape of the disaccharide peak was consistent with a lower content of O-sulphate in the heparan sulphates from transformed cells. 5. It was concluded that heparan sulphates from medium or transformed cells exhibit the greatest structural deviation from the normal case. The finding of lower proportions of extended, iduronate/glucuronate-bearing, N-sulphate-rich segments in heparan sulphates of transformed cells was particularly interesting in view of the fact that these elements have been associated with ability to self-interact.  相似文献   

14.
Three new sulphate ester salts derived from known coumarin alcohols–one of them tertiary–have been obtained from roots of Seseli libanotis subsp. eu-libanotis. Their structures were established as (2′S)-rutaretin-1″-sulphate, (3′R)-lomatin-3′-sulphate and (3′R,4′R)-khellactone-3′-sulphate. They were together with their parent alcohols characterized by 13C NMR spectroscopy. It is the first report on coumarin sulphates in plants.  相似文献   

15.
We examined the foliar flavonoids of Chrysanthemum arcticum subsp. arcticum and yezoense, and related Chrysanthemum species. Five flavonoid glycosides (luteolin 7-O-glucoside and 7-O-glucuronides of luteolin, apigenin, eriodictyol and naringenin) were isolated from these taxa. Luteolin 7-O-xylosylglucoside, luteolin, apigenin and quercetin 3-methyl ether were found in subsp. yezoense as very minor compounds that were not recognised by high-performance liquid chromatography/photodiode array (HPLC/PDA). The related species C. yezoense contained acacetin 7-O-rutinoside and some methoxylated flavone aglycones as major compounds. Thus, C. arcticum was distinguished from C. yezoense according to their flavonoid profiles.  相似文献   

16.
《Phytochemistry》1987,26(4):1031-1032
The whole plants of four Wurmbea species and one Burchardia species were analysed. All Wurmbea species contained tropolone alkaloids, mainly colchicine, 2-demethylcolchicine, 3-demethylcolchicine and β-lumicolchicine. From all these species the flavone luteolin and 2-hydroxy-6-methoxybenzoic, vanillic and salicylic acids were isolated. Burchardia multiflora yielded one unidentified non-tropolone alkaloid, luteolin, and benzoic and salicylic acids. The chemotaxonomic significance of the substances isolated within the subfamily Wurmbaeoideae is discussed.  相似文献   

17.
Notes on the rotifers of coal mine water in Eastern Poland   总被引:1,自引:0,他引:1  
S. Radwan  A. Paleolog 《Hydrobiologia》1983,104(1):307-309
The species composition and quantitative structure of the rotifer fauna was investigated in a reservoir containing coal mine water. Only nine mainly planktonic species of rotifers, were found. Two of these were dominating: Brachionus angularis and B. rubens. They are typical indicators of eutrophic waters. Chlorides and sulphates may have an influence on the occurrence and quantitative structure of rotifer assemblages in the investigated reservoir.  相似文献   

18.
Denervation of the amputated limb of newts stops the regeneration process by decreasing blastema cell proliferation. We investigated the effect of the denervation on each of the two compartments (epidermal cap, mesenchyme) in mid-bud blastemas on the level of sulphated glycosaminoglycans (GAGS). Denervation resulted in an increase of about threefold in the incorporation of [35S] sulphate into mesenchyme GAGs but had no effect on the epidermal cap. The increase of GAG synthesis in the mesenchymal part of the blastema involved both heparan sulphates and chondroitin-dermatan sulphates. Gel filtration showed no change in GAGs size after denervation. These results confirm that the mesenchymal part of the mid-bud blastema is the main target of nerves and, as heparan sulphates are known to store acidic fibroblast growth factor (aFGF), a polypeptide found in the blastema (Boilly et al.. 1991), this suggest that the nerves' effect on glycosaminoglycans turnover could be implicated in the control of bioavailability of this growth factor in the blastema.  相似文献   

19.
In a leaf flavonoid survey of 59 specimens of the Winteraceae and related families, representing nine genera, luteolin 7,3′-dimethyl ether (in 77%) and flavonols (in 81%) were found to be major constituents. Indeed the high incidence of luteolin 7,3′-dimethyl ether chemically isolates the family from all other angiosperm groups, including families and genera that have been taxonomically associated with the Winteraceae in the past. Simple flavones (in 16%), on the other hand, were found only in some Drimys s. str., Tasmannia and Pseudowintera species. Similarly, the distribution of flavone C-glycosides was restricted to specimens of T. piperita and one specimen of D. winteri. The frequent occurrence of procyanidin (in 60%) and dihydroquercetin (in 44%) reflects the primitive and woody nature of the family. The combined flavonoid data clearly support previous cytological, morphological and phylogenetic studies in the division of the Winteraceae into three groups of genera: (1) Bubbia, Belliolum, Exospermum and Zygogynum; (2) Drimys s. str. and Pseudowintera and (3) Tasmannia. Some generic variations were found within the Bubbia, Belliolum, Expospermum and Zygogynum group but apart from minor geographic variations within Belliolum the flavonoid results do not appear to provide suitable evidence for subgeneric taxonomy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号