首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Septins, cytoskeletal proteins with well‐characterised roles in cytokinesis, form cage‐like structures around cytosolic Shigella flexneri and promote their targeting to autophagosomes. However, the processes underlying septin cage assembly, and whether they influence S. flexneri proliferation, remain to be established. Using single‐cell analysis, we show that the septin cages inhibit S. flexneri proliferation. To study mechanisms of septin cage assembly, we used proteomics and found mitochondrial proteins associate with septins in S. flexneri‐infected cells. Strikingly, mitochondria associated with S. flexneri promote septin assembly into cages that entrap bacteria for autophagy. We demonstrate that the cytosolic GTPase dynamin‐related protein 1 (Drp1) interacts with septins to enhance mitochondrial fission. To avoid autophagy, actin‐polymerising Shigella fragment mitochondria to escape from septin caging. Our results demonstrate a role for mitochondria in anti‐Shigella autophagy and uncover a fundamental link between septin assembly and mitochondria.  相似文献   

2.
Until recently, it had appeared that the septin family of proteins was restricted to the opisthokont eukaryotes (the fungi and animals and their close relatives the microsporidia and choanoflagellates). It has now become apparent that septins are also present in several other widely divergent eukaryotic lineages (chlorophyte algae, brown algae, and ciliates). This distribution and the details of the non-opisthokont septin sequences appear to require major revisions to hypotheses about the origins and early evolution of the septins.  相似文献   

3.
Study of charophycean green algae, including the Coleochaetales, may shed light on the evolutionary history of characters they share with their land plant relatives. We examined the tubulin cytoskeleton during mitosis, cytokinesis, and growth in members of the Coleochaetales with diverse morphologies to determine if phragmoplasts occurred throughout this order and to identify microtubular patterns associated with cell growth. Species representing three subgroups of Coleochaete and its sister genus Chaetosphaeridium were studied. Cytokinesis involving a phragmoplast was found in the four taxa examined. Differential interference contrast microscopy of living cells confirmed that polar cytokinesis like that described in the model flowering plant Arabidopsis occurred in all species when the forming cell plate traversed a vacuole. Calcofluor labeling of cell walls demonstrated directed growth from particular cell regions of all taxa. Electron microscopy confirmed directed growth in the unusual growth pattern of Chaetosphaeridium. All four species exhibited unordered microtubule patterns associated with diffuse growth in early cell expansion. In subsequent elongating cells, Coleochaete irregularis Pringsheim and Chaetosphaeridium globosum (Nordstedt) Klebahn exhibited tubulin cytoskeleton arrays corresponding to growth patterns associated with tip growth in plants, fungi, and other charophycean algae. Hoop‐shaped microtubules frequently associated with diffuse growth of elongating cells in plants were not observed in any of these species. Presence of phragmoplasts in the diverse species studied supports the hypothesis that cytokinesis involving a phragmoplast originated in a common ancestor of the Coleochaetales, and possibly in a common ancestor of Charales, Coleochaetales, Zygnematales, and plants.  相似文献   

4.
Septins are a family of conserved GTP-binding proteins that function in cytokinesis in fungi and animals. In budding yeast, septins form scaffolds for assembly of the actomyosin contractile ring at the cleavage plane, a role that does not appear to be conserved in other organisms. The septins form an hourglass-shaped collar at the mother-bud neck, which splits into two rings flanking the division plane at cytokinesis. A recent study(1) demonstrates that these two septin rings constitute diffusion barriers that create a cytokinetic compartment to retain cortical cytokinetic factors in proximity to the cleavage plane.  相似文献   

5.
Foliicolous lichens are formed by diverse, highly specialized fungi that establish themselves and complete their life cycle within the brief duration of their leaf substratum. Over half of these lichen‐forming fungi are members of either the Gomphillaceae or Pilocarpaceae, and associate with Trebouxia‐like green algae whose identities have never been positively determined. We investigated the phylogenetic affinities of these photobionts to better understand their role in lichen establishment on an ephemeral surface. Thallus samples of Gomphillaceae and Pilocarpaceae were collected from foliicolous communities in southwest Florida and processed for sequencing of photobiont marker genes, algal cultivation and/or TEM. Additional specimens from these families and also from Aspidothelium (Thelenellaceae) were collected from a variety of substrates globally. Sequences from rbcL and nuSSU regions were obtained and subjected to Maximum Likelihood and Bayesian analyses. Analysis of 37 rbcL and 7 nuSSU algal sequences placed all photobionts studied within the provisional trebouxiophycean assemblage known as the Watanabea clade. All but three of the sequences showed affinities within Heveochlorella, a genus recently described from tree trunks in East Asia. The photobiont chloroplast showed multiple thylakoid stacks penetrating the pyrenoid centripetally as tubules lined with pyrenoglobuli, similar to the two described species of Heveochlorella. We conclude that Heveochlorella includes algae of potentially major importance as lichen photobionts, particularly within (but not limited to) foliicolous communities in tropical and subtropical regions worldwide. The ease with which they may be cultivated on minimal media suggests their potential to thrive free‐living as well as in lichen symbiosis.  相似文献   

6.
Triacylglycerols have important physiological roles in photosynthetic organisms, and are widely used as food, feed and industrial materials in our daily life. Phospholipid:diacylglycerol acyltransferase (PDAT) is the pivotal enzyme catalyzing the acyl‐CoA‐independent biosynthesis of triacylglycerols, which is unique in plants, algae and fungi, but not in animals, and has essential functions in plant and algal growth, development and stress responses. Currently, this enzyme has yet to be examined in an evolutionary context at the level of the green lineage. Some fundamental questions remain unanswered, such as how PDATs evolved in photosynthetic organisms and whether the evolution of terrestrial plant PDATs from a lineage of charophyte green algae diverges in enzyme function. As such, we used molecular evolutionary analysis and biochemical assays to address these questions. Our results indicated that PDAT underwent divergent evolution in the green lineage: PDATs exist in a wide range of plants and algae, but not in cyanobacteria. Although PDATs exhibit the conservation of several features, phylogenetic and selection‐pressure analyses revealed that overall they evolved to be highly divergent, driven by different selection constraints. Positive selection, as one major driving force, may have resulted in enzymes with a higher functional importance in land plants than green algae. Further structural and mutagenesis analyses demonstrated that some amino acid sites under positive selection are critically important to PDAT structure and function, and may be central in lecithin:cholesterol acyltransferase family enzymes in general.  相似文献   

7.
Septins are a component of the cytoskeleton and play important roles in diverse cellular processes including cell cycle control, cytokinesis and polarized growth. In fungi, septin organization, dynamics and function are regulated by phosphorylation, and several kinases responsible for the phosphorylation of several septins have been identified. However, little is known about the phosphatases that dephosphorylate septins. Here, we report the characterization of Tpd3, a structural subunit of the PP2A family of phosphatases, in the pathogenic fungus Candida albicans. We found that tpd3Δ/Δ cells are defective in hyphal growth and grow as pseudohyphae under yeast growth conditions with aberrant septin organization. Western blotting detected hyperphosphorylation of the septin Sep7 in cells lacking Tpd3. Tpd3 and Sep7 colocalize at the bud neck and can coimmunoprecipitate. Furthermore, we discovered similar defects in cells lacking Pph21, a catalytic subunit of the PP2A family, and its physical association with Tpd3. Importantly, purified Tpd3‐Pph21 complexes can dephosphorylate Sep7 in vitro. Together, our findings strongly support the idea that the Tpd3‐Pph21 complex dephosphorylates Sep7 and regulates morphogenesis and cytokinesis. The tpd3Δ/Δ mutant is greatly reduced in virulence in mice, providing a potential antifungal target.  相似文献   

8.
Investigation of cytoskeleton during bacterial infection has significantly contributed to both cell and infection biology. Bacterial pathogens Listeria monocytogenes and Shigella flexneri are widely recognised as paradigms for investigation of the cytoskeleton during bacterial entry, actin‐based motility, and cell‐autonomous immunity. At the turn of the century, septins were a poorly understood component of the cytoskeleton mostly studied in the context of yeast cell division and human cancer. In 2002, a screen performed in the laboratory of Pascale Cossart identified septin family member MSF (MLL septin‐like fusion, now called SEPT9) associated with L. monocytogenes entry into human epithelial cells. These findings inspired the investigation of septins during L. monocytogenes and S. flexneri infection at the Institut Pasteur, illuminating important roles for septins in host–microbe interactions. In this review, we revisit the history of septin biology and bacterial infection, and discuss how the comparative study of L. monocytogenes and S. flexneri has been instrumental to understand septin roles in cellular homeostasis and host defence.  相似文献   

9.
Septins are a conserved family of cytoskeletal GTPases present in different organisms, including yeast, drosophila, Caenorhabditis elegans and humans. In humans, septins are involved in various cellular processes, including exocytosis, apoptosis, leukemogenesis, carcinogenesis and neurodegeneration. Septin 7 is unique out of 13 human septins. Mammalian septin 6, septin 7, septin 2 and septin 9 coisolate together in complexes to form the core unit for the generation of the septin filaments. Physiological septin filaments are hetero‐oligomeric complexes consisting of core septin hexamers and octamers. Furthermore, septin 7 plays a crucial role in cytokinesis and mitosis. Septin 7 is localized to the filopodia and branches of developing hippocampal neurons, and is the most abundant septin in the adult rat forebrain as well as a structural component of the human and mouse sperm annuli. Septin 7 is crucial to the spine morphogenesis and dendrite growth in neurons, and is also a structural constituent of the annulus in human and mouse sperm. It can suppress growth of some tumours such as glioma and papillary thyroid carcinoma. However, the molecular mechanisms of involvement of septin 7 in human disease, especially in the development of cancer, remain unclear. This review focuses on the structure, function and mechanism of septin 7 in vivo, and summarizes the role of septin 7 in cell proliferation, cytokinesis, nervous and reproductive systems, as well as the underlying molecular events linking septin 7 to various diseases, such as Alzheimer's disease, schizophrenia, neuropsychiatric systemic lupus erythematosus, tumour and so on.  相似文献   

10.
Septins are cytoskeletal proteins implicated in cytokinesis and host-pathogen interactions. During macroautophagy/autophagy of Shigella flexneri, septins assemble into cage-like structures to entrap actin-polymerizing bacteria and restrict their dissemination. How septins assemble to entrap bacteria is not fully known. We discovered that mitochondria support septin cage assembly to promote autophagy of Shigella. Consistent with roles for the cytoskeleton in mitochondrial dynamics, we showed that DNM1L/DRP1 (dynamin 1 like) can interact with septins to enhance mitochondrial fission. Remarkably, Shigella fragment mitochondria and escape from septin cage entrapment in order to avoid autophagy. These results uncover a close relationship between mitochondria and septin assembly, and identify a new role for mitochondria in bacterial autophagy.  相似文献   

11.
Septins are filament-forming proteins with a conserved role in cytokinesis. In the fission yeast Schizosaccharomyces pombe, septin rings appear to be involved primarily in cell-cell separation, a late stage in cytokinesis. Here, we identified a protein Mid2p on the basis of its sequence similarity to S. pombe Mid1p, Saccharomyces cerevisiae Bud4p, and Candida albicans Int1p. Like septin mutants, mid2delta mutants had delays in cell-cell separation. mid2delta mutants were defective in septin organization but not contractile ring closure or septum formation. In wild-type cells, septins assembled first during mitosis in a single ring and during septation developed into double rings that did not contract. In mid2delta cells, septins initially assembled in a single ring but during septation appeared in the cleavage furrow, forming a washer or disc structure. FRAP studies showed that septins are stable in wild-type cells but exchange 30-fold more rapidly in mid2delta cells. Mid2p colocalized with septins and required septins for its localization. A COOH-terminal pleckstrin homology domain of Mid2p was required for its localization and function. No genetic interactions were found between mid2 and the related gene mid1. Thus, these studies identify a new factor responsible for the proper stability and function of septins during cytokinesis.  相似文献   

12.
Besides heat stress, the 70 kDa heat shock proteins (HSP70s) have been shown to respond to cold stress. However, the involved cis‐acting elements remain unknown. The hsp70 gene from the green macroalga Ulva prolifera (Uphsp70) has been cloned, from which one heat shock element HSE and one low‐temperature‐responsive element LTR were found in the promoter. Using the established transient expression system and quantitative GUS assay, a series of element deletion experiments were performed to determine the functions of HSE and LTR in response to temperature stress. The results showed that under cold stress, both HSE and LTR were indispensable, since deletion leads to complete loss of promoter activity. Under heat stress, although the HSE could respond independently, coexistence with LTR was essential for high induced activity of the Uphsp70 promoter. Therefore, synergistic effects exist between HSE and LTR elements in response to temperature stress in Ulva, and extensive bioinformatics analysis showed that the mechanism is widespread in algae and plants, since LTR coexists widely with HSE in the promoter region of hsp70. Our findings provide important supplements to the knowledge of algal and plant HSP70s response to temperature stress. We speculated that for algal domestication and artificial breeding, HSE and LTR elements might serve as potential molecular targets to temperature acclimation.  相似文献   

13.
In Middle European suburban environments green algae often cover open surfaces of artificial hard substrates. Microscopy reveals the Apatococcus/Desmococcus morphotype predominant over smaller coccoid forms. Adverse conditions such as limited water availability connected with high PAR and UV irradiance may narrow the algal diversity to a few specialists in these subaerial habitats. We used rRNA gene cloning/sequencing from both DNA extracts of the biofilms without culturing as well as cultures, for the unambiguous determination of the algal composition and to assess the algal diversity more comprehensively. The culture independent approach revealed mainly just two genera (Apatococcus, Trebouxia) for all study sites and five molecular operational taxonomic units (OTUs) for a particular study site, which based on microscopic observation was the one with the highest morphological diversity. The culture approach, however, revealed seven additional OTUs from five genera (Chloroidium, Coccomyxa, Coenochloris, Pabia, Klebsormidium) and an unidentified trebouxiophyte lineage for that same site; only two OTUs were shared by both approaches. Two OTUs or species were recovered for which references have been isolated only from Antarctica so far. However, the internal transcribed spacer (ITS) sequence differences among them supported they are representing distinct populations of the same species. Within Apatococcus five clearly distinct groups of ITS sequences, each putatively representing a distinct species, were recovered with three or four such ITS types co‐occurring at the same study site. Except for the streptophyte Klebsormidium only members of Trebouxiophyceae were detected suggesting these algae may be particularly well‐adapted to subaerial habitats.  相似文献   

14.
Septins are conserved, cytoskeletal GTPases that contribute to cytokinesis, exocytosis, cell surface organization and vesicle fusion by mechanisms that are poorly understood. Roles of septins in morphogenesis and virulence of a human pathogen and basidiomycetous yeast Cryptococcus neoformans were investigated. In contrast to a well‐established paradigm in S. cerevisiae, Cdc3 and Cdc12 septin homologues are dispensable for growth in C. neoformans yeast cells at 24°C but are essential at 37°C. In a bilateral cross between septin mutants, cells fuse but the resulting hyphae exhibit morphological abnormalities, including lack of properly fused specialized clamp cells and failure to produce spores. Interestingly, post‐mating hyphae of the septin mutants have a defect in nuclear distribution. Thus, septins are essential for the development of spores, clamp cell fusion and also play a specific role in nuclear dynamics in hyphae. In the post‐mating hyphae the septins localize to discrete sites in clamp connections, to the septa and the bases of the initial emerging spores. Strains lacking CDC3 or CDC12 exhibit significantly reduced virulence in a Galleria mellonella model of infection. Thus, C. neoformans septins are vital to morphology of the hyphae and contribute to virulence.  相似文献   

15.
16.
Nonsense‐mediated mRNA decay (NMD) is a eukaryotic process that targets selected mRNAs for destruction, for both quality control and gene regulatory purposes. SMG1, the core kinase of the NMD machinery in animals, phosphorylates the highly conserved UPF1 effector protein to activate NMD. However, SMG1 is missing from the genomes of fungi and the model flowering plant Arabidopsis thaliana, leading to the conclusion that SMG1 is animal‐specific and questioning the mechanistic conservation of the pathway. Here we show that SMG1 is not animal‐specific, by identifying SMG1 in a range of eukaryotes, including all examined green plants with the exception of A. thaliana. Knockout of SMG1 by homologous recombination in the basal land plant Physcomitrella patens reveals that SMG1 has a conserved role in the NMD pathway across kingdoms. SMG1 has been lost at various points during the evolution of eukaryotes from multiple lineages, including an early loss in the fungal lineage and a very recent observable gene loss in A. thaliana. These findings suggest that the SMG1 kinase functioned in the NMD pathway of the last common eukaryotic ancestor.  相似文献   

17.
Many freshwater protists harbor unicellular green algae within their cells and these host‐symbiont relationships slowly are becoming better understood. Recently, we reported that several ciliate species shared a single species of symbiotic algae. Nonetheless, the algae from different host ciliates were each distinguishable by their different genotypes, and these host‐algal genotype combinations remained unchanged throughout a 15‐month period of sampling from natural populations. The same algal species had been reported as the shared symbiont of several ciliates from a remote lake. Consequently, this alga appears to play a key role in ciliate‐algae symbioses. In the present study, we successfully isolated the algae from ciliate cells and established unialgal cultures. This species is herein named Brandtia ciliaticola gen. et sp. nov. and has typical ‘Chlorella‐like’ morphology, being a spherical autosporic coccoid with a single chloroplast containing a pyrenoid. The alga belongs to the Chlorella‐clade in Chlorellaceae (Trebouxiophyceae), but it is not strongly connected to any of the other genera in this group. In addition to this phylogenetic distinctiveness, a unique compensatory base change in the SSU rRNA gene is decisive in distinguishing this genus. Sequences of SSU‐ITS (internal transcribed spacer) rDNA for each isolate were compared to those obtained previously from the same host ciliate. Consistent algal genotypes were recovered from each host, which strongly suggests that B. ciliaticola has established a persistent symbiosis in each ciliate species.  相似文献   

18.
HSP33 was originally identified in bacteria as a redox‐sensitive chaperone that protects unfolded proteins from aggregation. Here, we describe a eukaryote ortholog of HSP33 from the green algae Chlamydomonas reinhardtii, which appears to play a protective role under light‐induced oxidizing conditions. The algal HSP33 exhibits chaperone activity, as shown by citrate synthase aggregation assays. Studies from the Jakob laboratory established that activation of the bacterial HSP33 upon its oxidation initiates by the release of pre‐bound Zn from the well conserved Zn‐binding motif Cys–X–Cys–Xn–Cys–X–X–Cys, and is followed by significant structural changes (Reichmann et al., 2012 ). Unlike the bacterial protein, the HSP33 from C. reinhardtii had lost the first cysteine residue of its center, diminishing Zn‐binding activity under all conditions. As a result, the algal protein can be easily activated by minor structural changes in response to oxidation and/or excess heat. An attempt to restore the missing first cysteine did not have a major effect on Zn‐binding and on the mode of activation. Replacement of all remaining cysteines abolished completely any residual Zn binding, although the chaperone activation was maintained. A phylogenetic analysis of the algal HSP33 showed that it clusters with the cyanobacterial protein, in line with its biochemical localization to the chloroplast. Indeed, expression of the algal HSP33 increases in response to light‐induced oxidative stress, which is experienced routinely by photosynthetic organisms. Despite the fact that no ortholog could be found in higher eukaryotes, its abundance in all algal species examined could have a biotechnological relevance.  相似文献   

19.
20.
Caenorhabditis elegans has two genes, unc-59 and unc-61, encoding septin-family GTPases. Mutations in the septin genes cause defects in locomotory behavior that have been previously attributed to cytokinesis failures in postembryonic neuroblasts. We find that mutations in either septin gene frequently cause uncoordination in newly hatched larvae in the absence of cytokinesis failures. The septins exhibit developmentally regulated expression, including expression in various neurons at times when processes are extending and synapses are forming. Motor neurons in the mutant larvae display defects in multiple aspects of axonal migration and guidance that are likely to be responsible for the locomotory behavior defects. The septins are also expressed in migrating distal tip cells, which are leaders for gonad arm extension. Septin mutants affect morphology of the distal tip cells, as well as their migration and guidance during gonadogenesis. These results suggest that septins may be generally required for developmental migrations and pathfinding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号