首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Atomic layer deposition (ALD) is used to deposit Pt nanoparticles at low temperature (25–150 °C) to fabricate highly transparent counter electrodes (CEs) for flexible dye‐sensitized solar cells (DSCs). The Pt nanoparticles (NPs) are deposited for different number of ALD cycles on indium tin oxide (ITO)/polyethylene naphthalate (PEN) substrates. Rutherford backscattering spectroscopy (RBS) and transmission electron microscopy (TEM) are used to assess the Pt NP loading, density, and size. There is a trade‐off between transparency and catalytic activity of the CE, and the best cell performances of back‐side‐illuminated DSCs (≈3.7% efficiency) are achieved for Pt ALD at temperatures in the range of 100–150 °C, even though deposition at 25 °C is also viable. The best cell produced with ALD platinized CE (100 cycles at 100 °C) outperforms the reference cells fabricated with electrodeposited and sputtered Pt CEs, with relative improvements in efficiency of 19% and 29%, respectively. In addition, these parameters are used to fabricate a large area CE for a sub‐module (active area of 17.6 cm2), resulting in an efficiency of 3.1%, which demonstrates the scalability of the process.  相似文献   

3.
Functioning quantum dot (QD) sensitized solar cells have been fabricated using the vacuum deposition technique atomic layer deposition (ALD). Utilizing the incubation period of CdS growth by ALD on TiO2, we are able to grow QDs of adjustable size which act as sensitizers for solid‐state QD‐sensitized solar cells (ssQDSSC). The size of QDs, studied with transmission electron microscopy (TEM), varied with the number of ALD cycles from 1‐10 nm. Photovoltaic devices with the QDs were fabricated and characterized using a ssQDSSC device architecture with 2,2',7,7'‐tetrakis‐(N,N‐di‐p methoxyphenylamine) 9,9'‐spirobifluorene (spiro‐OMeTAD) as the solid‐state hole conductor. The ALD approach described here can be applied to fabrication of quantum‐confined structures for a variety of applications, including solar electricity and solar fuels. Because ALD provides the ability to deposit many materials in very high aspect ratio substrates, this work introduces a strategy by which material and optical properties of QD sensitizers may be adjusted not only by the size of the particles but also in the future by the composition.  相似文献   

4.
5.
6.
This work introduces a novel silver composite cathode with a surface coating of scandia‐stabilized zirconia (ScSZ) nanoparticles for application in intermediate temperature solid oxide fuel cells (IT‐SOFCs). The ScSZ coating is expected to maximize the triple boundary area of the Ag electrode, ScSZ electrolyte, and oxygen gas, where the oxygen reduction reaction occurs. The coating also protects the porous Ag against thermal agglomeration during fuel cell operation. The ScSZ nanoparticles are prepared by sputtering scandium‐zirconium alloy followed by thermal oxidation on Ag mesh. The performance of the solid oxide fuel cells with a gadolinia‐doped ceria electrolyte support is evaluated. At temperatures <500 °C, our optimized Ag‐ScSZ cathode outperforms the bare Ag cathode and even the platinum cathode, which has been believed to be the best material for this purpose. The highest cell peak power with the Ag‐ScSZ cathode is close to 60 mW cm?2 at 450 °C, while bare Ag and optimized Pt cathodes produce 38.3 and 49.4 mW cm?2, respectively. Long‐term current measurement also confirms that the Ag‐ScSZ cathode is thermally stable, with less degradation than bare Ag or Pt.  相似文献   

7.
Controllable fabrication of compositionally graded Gd0.1Ce0.9O2‐δ and Y0.16Zr0.84O2‐δ electrolytes using co‐sputtering is demonstrated. Self‐supported membranes were lithographically fabricated to employ the new electrolytes into thin film solid oxide fuel cells. Devices integrating such electrolytes demonstrate performance of over 1175 mW cm?2 and 665 mW cm?2 at 520 °C using hydrogen and methane as fuel, respectively. The results present a general strategy to fabricate nanoscale functionally graded materials with selective interfacial functionality for energy conversion.  相似文献   

8.
Cobalt‐based electrolytes are highly tunable and have pushed the limits of dye‐sensitized solar cells, enabling higher open‐circuit voltages and new record efficiencies. However, the performance of these electrolytes and a range of other electrolytes suffer from slow electron transfer at platinum counter electrodes. High surface area platinum would enhance catalysis, but pure platinum structures are too expensive in practice. Here, a material‐efficient host‐guest architecture is developed that uses an ultrathin layer of platinum deposited upon an electrically conductive scaffold, niobium‐doped tin oxide (NTO). This nanostructured composite enhances the counter electrode performance of dye‐sensitized solar cells (DSCs) using a Co(II/III)BPY3 electrolyte with an increased fill factor and power conversion efficiency (11.26%), compared to analogous flat films. The modular strategy is elaborated by integrating a light scattering layer onto the counter electrode to reflect unabsorbed light back to the photoanode to improve the short‐circuit current density and power conversion efficiency.  相似文献   

9.
Metal halide perovskites offer a wide and tunable bandgap, making them promising candidates for top‐cell absorbers in tandem photovoltaics. In this work, the authors aim to understand the atomic layer deposition (ALD) precursor–perovskite interactions of the tin oxide ALD system and the role of organic fullerenes at the perovskite–tin oxide interface while establishing a framework for developing alternative perovskite‐compatible ALD processes in the future. It is shown, in the case of tin oxide ALD growth with tetrakis(dimethylamino)tin(IV) and water on FA0.83Cs0.17Pb(I0.83Br0.17)3 perovskite, that perovskite stability is most sensitive to metal–organic exposure at elevated temperatures with an onset near 110 °C, resulting in removal of the formamidinium cation. Transitioning from ALD to pulsed‐chemical vapor deposition tin oxide growth can minimize the degradation effects. Investigation of fullerenes at the perovskite interface shows that thin fullerene layers offer minor improvements to perovskite stability under ALD conditions, but significant enhancement in carrier extraction. Fullerene materials are undesirable due to fabrication cost and poor mechanical stability. Compositional tuning of the perovskite material can improve the fullerene‐free device performance. This method is demonstrated with a bromine‐rich perovskite phase to enable an 8.2% efficient perovskite device with all‐inorganic extraction layers.  相似文献   

10.
An advanced multifuelled solid oxide fuel cell (ASOFC) with a functional nanocomposite was developed and tested for use in a polygeneration system. Several different types of fuel, for example, gaseous (hydrogen and biogas) and liquid fuels (bio‐ethanol and bio‐methanol), were used in the experiments. Maximum power densities of 1000, 300, 600, 550 mW cm?2 were achieved using hydrogen, bio‐gas, bio‐methanol, and bio‐ethanol, respectively, in the ASOFC. Electrical and total efficiencies of 54% and 80% were achieved using the single cell with hydrogen fuel. These results show that the use of a multi‐fuelled system for polygeneration is a promising means of generating sustainable power.  相似文献   

11.
The field of research into solid oxide fuel cell (SOFC) anode materials has been rapidly moving forward. In the four years since the last in‐depth review significant advancements have been made in the reduction of the operating temperature and improvement of the performance of SOFCs. This progress report examines the developments in the field and looks to draw conclusions and inspiration from this research. A brief introduction is given to the field, followed by an overview of the principal previous materials. A detailed analysis of the developments of the last 4 years is given using a selection of the available literature, concentrating on metal‐fluorite cermets and perovskite‐based materials. This is followed by a consideration of alternate fuels for use in SOFCs and their associated problems and a short discussion on the effect of synthesis method on anode performance. The concluding remarks compile the significant developments in the field along with a consideration of the promise of future research. The recent progress in the development of anode materials for SOFCs based on oxygen ion conducting electrolytes is reviewed.  相似文献   

12.
BaZr0.7Sn0.1Y0.2O3–δ (BZSY) is developed as a novel chemically stable proton conductor for solid oxide fuel cells (SOFCs). BZSY possesses the same cubic symmetry of space group Pm‐3m with BaZr0.8Y0.2O3‐δ (BZY). Thermogravimetric analysis (TGA) and X‐ray photoelectron spectra (XPS) results reveal that BZSY exhibits remarkably enhanced hydration ability compared to BZY. Correspondingly, BZSY shows significantly improved electrical conductivity. The chemical stability test shows that BZSY is quite stable under atmospheres containing CO2 or H2O. Fully dense BZSY electrolyte films are successfully fabricated on NiO–BZSY anode substrates followed by co‐firing at 1400 °C for 5 h and the film exhibits excellent electrical conductivity under fuel cell conditions. The single cell with a 12‐μm‐thick BZSY electrolyte film outputs by far the best performance for acceptor‐doped BaZrO3‐based SOFCs. With wet hydrogen (3% H2O) as the fuel and static air as the oxidant, the peak power density of the cell achieves as high as 360 mWcm?2 at 700 °C, an increase of 42% compared to the reported highest performance of BaZrO3‐based cells. The encouraging results demonstrate that BZSY is a good candidate as the electrolyte material for next generation high performance proton‐conducting SOFCs.  相似文献   

13.
Partially amorphous La0.6Sr0.4CoO3‐δ (LSC) thin‐film cathodes are fabricated using pulsed laser deposition and are integrated in free‐standing micro‐solid oxide fuel cells (micro‐SOFC) with a 3YSZ electrolyte and a Pt anode. A low degree of crystallinity of the LSC layers is achieved by taking advantage of the miniaturization of the cells, which permits low‐temperature operation (300–450 °C). Thermomechanically stable micro‐SOFC are obtained with strongly buckled electrolyte membranes. The nanoporous columnar microstructure of the LSC layers provides a large surface area for oxygen incorporation and is also believed to reduce the amount of stress at the cathode/electrolyte interface. With a high rate of failure‐free micro‐SOFC membranes, it is possible to avoid gas cross‐over and open‐circuit voltages of 1.06 V are attained. First power densities as high as 200–262 mW cm?2 at 400–450 °C are achieved. The area‐specific resistance of the oxygen reduction reaction is lower than 0.3 Ω cm2 at 400 °C around the peak power density. These outstanding findings demonstrate that partially amorphous oxides are promising electrode candidates for the next‐generation of solid oxide fuel cells working at low‐temperatures.  相似文献   

14.
Overcoming the sluggish activity of cathode materials is critical to realizing the wide‐spread application of intermediate‐temperature solid oxide fuel cells. Herein, a new way is reported to tune the performance of perovskite‐type materials as oxygen reduction electrodes by embedding anions (F?) in oxygen sites. The obtained perovskite oxyfluorides SrFeO3?σ ?δ Fσ and SrFe0.9Ti0.1O3?σ ?δ Fσ (σ = 0.05 and 0.10) show improved electrocatalytic activity compared to their parent oxides, achieving area specific resistance values of 0.875, 0.393, and 0.491 Ω cm2 for SrFeO3?δ , SrFeO2.95?δ F0.05, and SrFeO2.90?δ F0.10, respectively, at 600 °C in air. Such improved performance is a result of the improved bulk diffusion and surface exchange properties due to anion doping. Moreover, favorable stability in performance is also demonstrated for the F? anion‐doped perovskites as oxygen reduction electrodes at 650 °C for a test period of ≈200 h. A combination of anion doping and cation doping may provide a highly attractive strategy for the future development of cathode materials.  相似文献   

15.
Multijunction solar cells are designed to improve the overlap with the solar spectrum and to minimize losses due to thermalization. Aside from the optimum choice of photoactive materials for the respective sub‐cells, a proper interconnect is essential. This study demonstrates a novel all‐oxide interconnect based on the interface of the high‐work‐function (WF) metal oxide MoOx and low‐WF tin oxide (SnOx). In contrast to typical p‐/n‐type tunnel junctions, both the oxides are n‐type semiconductors with a WF of 5.2 and 4.2 eV, respectively. It is demonstrated that the electronic line‐up at the interface of MoOx and SnOx comprises a large intrinsic interface dipole (≈0.8 eV), which is key to afford ideal alignment of the conduction band of MoOx and SnOx, without the requirement of an additional metal or organic dipole layer. The presented MoOx/SnOx interconnect allows for the ideal (loss‐free) addition of the open circuit voltages of the two sub‐cells.  相似文献   

16.
17.
18.
19.
The preparation of ZnO structured films designed to act as electron transport layers in efficient ZnO/perovskite CH3NH3PbI3/spirobifluorene (spiro‐OMeTAD) solid‐state solar cells by electrochemical deposition is reported. Well‐conducting ZnO layers are deposited in chloride medium and grown with tailored (nano)structures ranging from arrays of nanowires to a compact, well‐covering film. Moreover, the effect of a thin intermediate overlayer of ZnO conformally electrodeposited in nitrate medium and with a low n‐type doping (i‐ZnO) is discussed. The results show higher power conversion efficiencies for the nanostructured oxide layers compared to the dense one. Moreover, the presence of the i‐ZnO layer is shown to markedly improve the cell short‐circuit current and the open‐circuit voltage due to charge recombination reduction. For the best cells, the active layers efficiently absorb light over a large spectral range from near‐UV to near infrared region and exhibit excellent charge collection efficiencies. Solar cells based on an optimized design generate a very large photocurrent and the power conversion efficiency at one sun is as high as 10.28%.  相似文献   

20.
Despite a rapid increase in light harvesting efficiencies, organic–inorganic hybrid perovskite solar cells (PSCs) exhibit relatively inefficient photocurrent generation in the UV region and severe degradation when exposed to UV light and humidity. Herein, to enhance UV and humidity stability as well as photocurrent generating efficiency, a water‐repellent platinum(II) complex, Pt‐F , is developed as a luminescent photon downshifting layer (PDL) for PSCs. The Pt‐F PDL is fabricated on the glass substrate of a PSC using ultrasonic spray deposition, resulting in a considerably higher crystallinity and photoluminescence quantum yield (PLQY) than those fabricated by conventional spin‐coating processes (PLQYs of 77% and 19%, respectively). A maximum device performance of 22.0% is achieved through the addition of a PDL coating to a 21.4% efficient PSC owing to the long‐range photon downshifting effect of Pt‐F , as confirmed by the enhanced spectral response of the device in the UV region. Moreover, remarkable improvements in UV and humidity stability are observed in Pt‐F ‐coated PSCs. The versatile effects of the Pt‐F ‐based PDL, when fabricated by ultrasonic spray deposition, suggest wide ranging applicability that can improve the performance and stability of other optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号