首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fine physical map of the rice (Oryza sativa spp. Japonica var. Nipponbare) chromosome 5 with bacterial artificial chromosome (BAC) and PI-derived artificial chromosome (PAC) clones was constructed through integration of 280 sequenced BAC/PAC clones and 232 sequence tagged site/expressed sequence tag markers with the use of fingerprinted contig data of the Nipponbare genome. This map consists of five contigs covering 99% of the estimated chromosome size (30.08 Mb). The four physical gaps were estimated at 30 and 20 kb for gaps 1–3 and gap 4, respectively. We have submitted 42.2-Mb sequences with 29.8 Mb of nonoverlapping sequences to public databases. BAC clones corresponding to telomere and centromere regions were confirmed by BAC-fluorescence in situ hybridization (FISH) on a pachytene chromosome. The genetically centromeric region at 54.6 cM was covered by a minimum tiling path spanning 2.1 Mb with no physical gaps. The precise position of the centromere was revealed by using three overlapping BAC/PACs for ~150 kb. In addition, FISH results revealed uneven chromatin condensation around the centromeric region at the pachytene stage. This map is of use for positional cloning and further characterization of the rice functional genomics. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users. Chia-Hsiung Cheng and Mei-Chu Chung have equal contributions.  相似文献   

2.
The physical map of the hexaploid wheat chromosome 3B was screened using centromeric DNA probes. A 1.1‐Mb region showing the highest number of positive bacterial artificial chromosome (BAC) clones was fully sequenced and annotated, revealing that 96% of the DNA consisted of transposable elements, mainly long terminal repeat (LTR) retrotransposons (88%). Estimation of the insertion time of the transposable elements revealed that CRW (also called Cereba) and Quinta are the youngest elements at the centromeres of common wheat (Triticum spp.) and its diploid ancestors, with Quinta being younger than CRW in both diploid and hexaploid wheats. Chromatin immunoprecipitation experiments revealed that both CRW and Quinta families are targeted by the centromere‐specific histone H3 variant CENH3. Immuno colocalization of retroelements and CENH3 antibody indicated that a higher proportion of Quinta than CRWs was associated with CENH3, although CRWs were more abundant. Long arrays of satellite repeats were also identified in the wheat centromere regions, but they lost the ability to bind with CENH3. In addition to transposons, two functional genes and one pseudogene were identified. The gene density in the centromere appeared to be between three and four times lower than the average gene density of chromosome 3B. Comparisons with related grasses also indicated a loss of microcollinearity in this region. Finally, comparison of centromeric sequences of Aegilops tauschii (DD), Triticum boeoticum (AA) and hexaploid wheat revealed that the centromeres in both the polyploids and diploids are still undergoing dynamic changes, and that the new CRWs and Quintas may have undertaken the core role in kinetochore formation.  相似文献   

3.
Recently discovered strong nucleosomes (SNs) are characterized by strongly periodical DNA sequence, with visible rather than hidden sequence periodicity. In a quest for possible functions of the SNs, it has been found that the SNs concentrate within centromere regions of A. thaliana chromosomes . They, however, have been detected in Caenorhabditis elegans as well, although the holocentric chromosomes of this species do not have centromeres. Scrutinizing the SNs of C. elegans and their distributions along the DNA sequences of the chromosomes, we have discovered that the SNs are located mainly at the ends of the chromosomes of C. elegans. This suggests that, perhaps, the ends of the chromosomes fulfill some function(s) of centromeres in this species, as also indicated by the cytogenetic studies on meiotic chromosomes in spermatocytes of C. elegans, where the end-to-end association is observed. The centromeric involvement of the SNs, also found in A. thaliana, opens new horizons for the chromosome and centromere structure studies.  相似文献   

4.
5.
Sex chromosomes have been studied in many plant and animal species. However, few species are suitable as models to study the evolutionary histories of sex chromosomes. We previously demonstrated that papaya (Carica papaya) (2n = 2x = 18), a fruit tree in the family Caricaceae, contains recently emerged but cytologically heteromorphic X/Y chromosomes. We have been intrigued by the possible presence and evolution of sex chromosomes in other dioecious Caricaceae species. We selected a set of 22 bacterial artificial chromosome (BAC) clones that are distributed along the papaya X/Y chromosomes. These BACs were mapped to the meiotic pachytene chromosomes of Vasconcellea parviflora (2n = 2x = 18), a species that diverged from papaya ∼27 million years ago. We demonstrate that V. parviflora contains a pair of heteromorphic X/Y chromosomes that are homologous to the papaya X/Y chromosomes. The comparative mapping results revealed that the male-specific regions of the Y chromosomes (MSYs) probably initiated near the centromere of the Y chromosomes in both species. The two MSYs, however, shared only a small chromosomal domain near the centromere in otherwise rearranged chromosomes. The V. parviflora MSY expanded toward the short arm of the chromosome, whereas the papaya MSY expanded in the opposite direction. Most BACs mapped to papaya MSY were not located in V. parviflora MSY, revealing different DNA compositions in the two MSYs. These results suggest that mutation of gene(s) in the centromeric region may have triggered sex chromosome evolution in these plant species.  相似文献   

6.
Few angiosperms have distinct Y chromosomes. Among those that do are Silene latifolia (Caryophyllaceae), Rumex acetosa (Polygonaceae) and Coccinia grandis (Cucurbitaceae), the latter having a male/female difference of 10% of the total genome (female individuals have a 0.85 pg genome, male individuals 0.94 pg), due to a Y chromosome that arose about 3 million years ago. We compared the sequence composition of male and female C. grandis plants and determined the chromosomal distribution of repetitive and organellar DNA with probes developed from 21 types of repetitive DNA, including 16 mobile elements. The size of the Y chromosome is largely due to the accumulation of certain repeats, such as members of the Ty1/copia and Ty3/gypsy superfamilies, an unclassified element and a satellite, but also plastome‐ and chondriome‐derived sequences. An abundant tandem repeat with a unit size of 144 bp stains the centromeres of the X chromosome and the autosomes, but is absent from the Y centromere. Immunostaining with pericentromere‐specific markers for anti‐histone H3Ser10ph and H2AThr120ph revealed a Y‐specific extension of these histone marks. That the Y centromere has a different make‐up from all the remaining centromeres raises questions about its spindle attachment, and suggests that centromeric or pericentromeric chromatin might be involved in the suppression of recombination.  相似文献   

7.
Chromosome rearrangements may result in both decrease and increase of chromosome numbers. Here we have used comparative chromosome painting (CCP) to reconstruct the pathways of descending and ascending dysploidy in the genus Boechera (tribe Boechereae, Brassicaceae). We describe the origin and structure of three Boechera genomes and establish the origin of the previously described aberrant Het and Del chromosomes found in Boechera apomicts with euploid (2n = 14) and aneuploid (2n = 15) chromosome number. CCP analysis allowed us to reconstruct the origin of seven chromosomes in sexual Bstricta and apomictic B. divaricarpa from the ancestral karyotype (n = 8) of Brassicaceae lineage I. Whereas three chromosomes (BS4, BS6, and BS7) retained their ancestral structure, five chromosomes were reshuffled by reciprocal translocations to form chromosomes BS1‐BS3 and BS5. The reduction of the chromosome number (from x = 8 to x = 7) was accomplished through the inactivation of a paleocentromere on chromosome BS5. In apomictic 2n = 14 plants, CCP identifies the largely heterochromatic chromosome (Het) being one of the BS1 homologues with the expansion of pericentromeric heterochromatin. In apomictic B. polyantha (2n = 15), the Het has undergone a centric fission resulting in two smaller chromosomes – the submetacentric Het′ and telocentric Del. Here we show that new chromosomes can be formed by a centric fission and can be fixed in populations due to the apomictic mode of reproduction.  相似文献   

8.
In higher eukaryotes, centromeres are typically composed of megabase‐sized arrays of satellite repeats that evolve rapidly and homogenize within a species' genome. Despite the importance of centromeres, our knowledge is limited to a few model species. We conducted a comprehensive analysis of common bean (Phaseolus vulgaris) centromeric satellite DNA using genomic data, fluorescence in situ hybridization (FISH), immunofluorescence and chromatin immunoprecipitation (ChIP). Two unrelated centromere‐specific satellite repeats, CentPv1 and CentPv2, and the common bean centromere‐specific histone H3 (PvCENH3) were identified. FISH showed that CentPv1 and CentPv2 are predominantly located at subsets of eight and three centromeres, respectively. Immunofluorescence‐ and ChIP‐based assays demonstrated the functional significance of CentPv1 and CentPv2 at centromeres. Genomic analysis revealed several interesting features of CentPv1 and CentPv2: (i) CentPv1 is organized into an higher‐order repeat structure, named Nazca, of 528 bp, whereas CentPv2 is composed of tandemly organized monomers; (ii) CentPv1 and CentPv2 have undergone chromosome‐specific homogenization; and (iii) CentPv1 and CentPv2 are not likely to be commingled in the genome. These findings suggest that two distinct sets of centromere sequences have evolved independently within the common bean genome, and provide insight into centromere satellite evolution.  相似文献   

9.
In higher plants, the large‐scale structure of monocentric chromosomes consists of distinguishable eu‐ and heterochromatic regions, the proportions and organization of which depend on a species' genome size. To determine whether the same interplay is maintained for holocentric chromosomes, we investigated the distribution of repetitive sequences and epigenetic marks in the woodrush Luzula elegans (3.81 Gbp/1C). Sixty‐one per cent of the L. elegans genome is characterized by highly repetitive DNA, with over 30 distinct sequence families encoding an exceptionally high diversity of satellite repeats. Over 33% of the genome is composed of the Angela clade of Ty1/copia LTR retrotransposons, which are uniformly dispersed along the chromosomes, while the satellite repeats occur as bands whose distribution appears to be biased towards the chromosome termini. No satellite showed an almost chromosome‐wide distribution pattern as expected for a holocentric chromosome and no typical centromere‐associated LTR retrotransposons were found either. No distinguishable large‐scale patterns of eu‐ and heterochromatin‐typical epigenetic marks or early/late DNA replicating domains were found along mitotic chromosomes, although super‐high‐resolution light microscopy revealed distinguishable interspersed units of various chromatin types. Our data suggest a correlation between the centromere and overall genome organization in species with holocentric chromosomes.  相似文献   

10.
The brown planthopper Nilaparvata lugens, white‐backed planthopper Sogatella furcifera, and small brown planthopper Laodelphax striatellus are three major insect pests of rice. They are genetically close; however, they differ in several ecological traits such as host range, migration capacity, and in their sex chromosomes. Though the draft genome of these three planthoppers have been previously released, the quality of genome assemblies need to be improved. The absence of chromosome‐level genome resources has hindered in‐depth research of these three species. Here, we performed a de novo genome assembly for N. lugens to increase its genome assembly quality with PacBio and Illumina platforms, increasing the contig N50 to 589.46 Kb. Then, with the new N. lugens genome and previously reported S. furcifera and L. striatellus genome assemblies, we generated chromosome‐level scaffold assemblies of these three planthopper species using HiC scaffolding technique. The scaffold N50s significantly increased to 77.63 Mb, 43.36 Mb and 29.24 Mb for N. lugens, S. furcifera and L. striatellus, respectively. To identify sex chromosomes of these three planthopper species, we carried out genome re‐sequencing of males and females and successfully determined the X and Y chromosomes for N. lugens, and X chromosome for S. furcifera and L. striatellus. The gene content of the sex chromosomes showed high diversity among these three planthoppers suggesting the rapid evolution of sex‐linked genes, and all chromosomes showed high synteny. The chromosome‐level genome assemblies of three planthoppers would provide a valuable resource for a broad range of future research in molecular ecology, and subsequently benefits development of modern pest control strategies.  相似文献   

11.
Parasitoid wasps represent a large proportion of hymenopteran species. They have complex evolutionary histories and are important biocontrol agents. To advance parasitoid research, a combination of Illumina short‐read, PacBio long‐read and Hi‐C scaffolding technologies was used to develop a high‐quality chromosome‐level genome assembly for Pteromalus puparum, which is an important pupal endoparasitoid of caterpillar pests. The chromosome‐level assembly has aided in studies of venom and detoxification genes. The assembled genome size is 338 Mb with a contig N50 of 38.7 kb and a scaffold N50 of 1.16 Mb. Hi‐C analysis assembled scaffolds onto five chromosomes and raised the scaffold N50 to 65.8 Mb, with more than 96% of assembled bases located on chromosomes. Gene annotation was assisted by RNA sequencing for the two sexes and four different life stages. Analysis detected 98% of the BUSCO (Benchmarking Universal Single‐Copy Orthologs) gene set, supporting a high‐quality assembly and annotation. In total, 40.1% (135.6 Mb) of the assembly is composed of repetitive sequences, and 14,946 protein‐coding genes were identified. Although venom genes play important roles in parasitoid biology, their spatial distribution on chromosomes was poorly understood. Mapping has revealed venom gene tandem arrays for serine proteases, pancreatic lipase‐related proteins and kynurenine–oxoglutarate transaminases, which have amplified in the P. puparum lineage after divergence from its common ancestor with Nasonia vitripennis. In addition, there is a large expansion of P450 genes in P. puparum. These examples illustrate how chromosome‐level genome assembly can provide a valuable resource for molecular, evolutionary and biocontrol studies of parasitoid wasps.  相似文献   

12.
The Tetraodontidae family are known to have relatively small and compact genomes compared to other vertebrates. The obscure puffer fish Takifugu obscurus is an anadromous species that migrates to freshwater from the sea for spawning. Thus the euryhaline characteristics of T. obscurus have been investigated to gain understanding of their survival ability, osmoregulation, and other homeostatic mechanisms in both freshwater and seawater. In this study, a high quality chromosome‐level reference genome for T. obscurus was constructed using long‐read Pacific Biosciences (PacBio) Sequel sequencing and a Hi‐C‐based chromatin contact map platform. The final genome assembly of T. obscurus is 381 Mb, with a contig N50 length of 3,296 kb and longest length of 10.7 Mb, from a total of 62 Gb of raw reads generated using single‐molecule real‐time sequencing technology from a PacBio Sequel platform. The PacBio data were further clustered into chromosome‐scale scaffolds using a Hi‐C approach, resulting in a 373 Mb genome assembly with a contig N50 length of 15.2 Mb and and longest length of 28 Mb. When we directly compared the 22 longest scaffolds of T. obscurus to the 22 chromosomes of the tiger puffer Takifugu rubripes, a clear one‐to‐one orthologous relationship was observed between the two species, supporting the chromosome‐level assembly of T. obscurus. This genome assembly can serve as a valuable genetic resource for exploring fugu‐specific compact genome characteristics, and will provide essential genomic information for understanding molecular adaptations to salinity fluctuations and the evolution of osmoregulatory mechanisms.  相似文献   

13.
Genetic maps are based on the frequency of recombination and often show different positions of molecular markers in comparison to physical maps, particularly in the centromere that is generally poor in meiotic recombinations. To decipher the position and order of DNA sequences genetically mapped to the centromere of barley (Hordeum vulgare) chromosome 3H, fluorescence in situ hybridization with mitotic metaphase and meiotic pachytene chromosomes was performed with 70 genomic single‐copy probes derived from 65 fingerprinted bacterial artificial chromosomes (BAC) contigs genetically assigned to this recombination cold spot. The total physical distribution of the centromeric 5.5 cM bin of 3H comprises 58% of the mitotic metaphase chromosome length. Mitotic and meiotic chromatin of this recombination‐poor region is preferentially marked by a heterochromatin‐typical histone mark (H3K9me2), while recombination enriched subterminal chromosome regions are enriched in euchromatin‐typical histone marks (H3K4me2, H3K4me3, H3K27me3) suggesting that the meiotic recombination rate could be influenced by the chromatin landscape.  相似文献   

14.
Physical maps and recombination frequency of six rice chromosomes   总被引:2,自引:0,他引:2  
We constructed physical maps of rice chromosomes 1, 2, and 6-9 with P1-derived artificial chromosome (PAC) and bacterial artificial chromosome (BAC) clones. These maps, with only 20 gaps, cover more than 97% of the predicted length of the six chromosomes. We submitted a total of 193 Mbp of non-overlapping sequences to public databases. We analyzed the DNA sequences of 1316 genetic markers and six centromere-specific repeats to facilitate characterization of chromosomal recombination frequency and of the genomic composition and structure of the centromeric regions. We found marked changes in the relative recombination rate along the length of each chromosome. Chromosomal recombination at the centromere core and surrounding regions on the six chromosomes was completely suppressed. These regions have a total physical length of about 23 Mbp, corresponding to 11.4% of the entire size of the six chromosomes. Chromosome 6 has the longest quiescent region, with about 5.6 Mbp, followed by chromosome 8, with quiescent region about half this size. Repetitive sequences accounted for at least 40% of the total genomic sequence on the partly sequenced centromeric region of chromosome 1. Rice CentO satellite DNA is arrayed in clusters and is closely associated with the presence of Centromeric Retrotransposon of Rice (CRR)- and RIce RetroElement 7 (RIRE7)-like retroelement sequences. We also detected relatively small coldspot regions outside the centromeric region; their repetitive content and gene density were similar to those of regions with normal recombination rates. Sequence analysis of these regions suggests that either the amount or the organization patterns of repetitive sequences may play a role in the inactivation of recombination.  相似文献   

15.
Chromosome painting based on fluorescence in situ hybridization (FISH) has played an important role in chromosome identification and research into chromosome rearrangements, diagnosis of chromosome abnormalities and evolution in human and animal species. However, it has not been applied widely in plants due to the large amounts of dispersed repetitive sequences in chromosomes. In the present work, a chromosome painting method for single‐copy gene pools in Cucumis sativus was successfully developed. Gene probes with sizes above 2 kb were detected consistently. A cucumber karyotype was constructed based on FISH using a cocktail containing chromosome‐specific gene probes. This single‐copy gene‐based chromosome painting (ScgCP) technique was performed by PCR amplification, purification, pooling, labeling and hybridization onto chromosome spreads. Gene pools containing sequential genes with an interval less than 300 kb yielded painting patterns on pachytene chromosomes. Seven gene pools corresponding to individual chromosomes unambiguously painted each chromosome pair of C. sativus. Three mis‐aligned regions on chromosome 4 were identified by the painting patterns. A probe pool comprising 133 genes covering the 8 Mb distal end of chromosome 4 was used to evaluate the potential utility of the ScgCP technique for chromosome rearrangement research through cross‐species FISH in the Cucumis genus. Distinct painting patterns of this region were observed in C. sativus, C. melo and C. metuliferus species. A comparative chromosome map of this region was constructed between cucumber and melon. With increasing sequence resources, this ScgCP technique may be applied on any other sequenced species for chromosome painting research.  相似文献   

16.
In an attempt to combine a cloned genomic copy of a selectable gene with different cloned centromeric sequences to develop mammalian artificial chromosomes (MAC) we used site specific recombination mediated by purified Cre recombinase acting on the loxP sequence in PAC vector DNA. A new method was required to purify highly concentrated, virtually 100% intact PAC DNA which could be stored for a long period. Here we show the efficient linking of linearized PACs containing alpha satellite DNA from chromosomes X and 17 with sizes of 125 and 140 kb, respectively, to a 95 kb restriction fragment derived from a 175 kb PAC containing the intact human HPRT gene locus.  相似文献   

17.
Endogenous pararetroviral sequences are the most commonly found virus sequences integrated into angiosperm genomes. We describe an endogenous pararetrovirus (EPRV) repeat in Fritillaria imperialis, a species that is under study as a result of its exceptionally large genome (1C = 42 096 Mbp, approximately 240 times bigger than Arabidopsis thaliana). The repeat (FriEPRV) was identified from Illumina reads using the RepeatExplorer pipeline, and exists in a complex genomic organization at the centromere of most, or all, chromosomes. The repeat was reconstructed into three consensus sequences that formed three interconnected loops, one of which carries sequence motifs expected of an EPRV (including the gag and pol domains). FriEPRV shows sequence similarity to members of the Caulimoviridae pararetrovirus family, with phylogenetic analysis indicating a close relationship to Petuvirus. It is possible that no complete EPRV sequence exists, although our data suggest an abundance that exceeds the genome size of Arabidopsis. Analysis of single nucleotide polymorphisms revealed elevated levels of C→T and G→A transitions, consistent with deamination of methylated cytosine. Bisulphite sequencing revealed high levels of methylation at CG and CHG motifs (up to 100%), and 15–20% methylation, on average, at CHH motifs. FriEPRV's centromeric location may suggest targeted insertion, perhaps associated with meiotic drive. We observed an abundance of 24 nt small RNAs that specifically target FriEPRV, potentially providing a signature of RNA‐dependent DNA methylation. Such signatures of epigenetic regulation suggest that the huge genome of F. imperialis has not arisen as a consequence of a catastrophic breakdown in the regulation of repeat amplification.  相似文献   

18.
Genomes of varying sizes have been sequenced with next‐generation sequencing platforms. However, most reference sequences include draft unordered scaffolds containing chimeras caused by mis‐scaffolding. A BioNano genome (BNG) optical map was constructed to improve the previously sequenced flax genome (Linum usitatissimum L., 2n = 30, about 373 Mb), which consisted of 3852 scaffolds larger than 1 kb and totalling 300.6 Mb. The high‐resolution BNG map of cv. CDC Bethune totalled 317 Mb and consisted of 251 BNG contigs with an N50 of 2.15 Mb. A total of 622 scaffolds (286.6 Mb, 94.9%) aligned to 211 BNG contigs (298.6 Mb, 94.2%). Of those, 99 scaffolds, diagnosed to contain assembly errors, were refined into 225 new scaffolds. Using the newly refined scaffold sequences and the validated bacterial artificial chromosome‐based physical map of CDC Bethune, the 211 BNG contigs were scaffolded into 94 super‐BNG contigs (N50 of 6.64 Mb) that were further assigned to the 15 flax chromosomes using the genetic map. The pseudomolecules total about 316 Mb, with individual chromosomes of 15.6 to 29.4 Mb, and cover 97% of the annotated genes. Evidence from the chromosome‐scale pseudomolecules suggests that flax has undergone palaeopolyploidization and mesopolyploidization events, followed by rearrangements and deletions or fusion of chromosome arms from an ancient progenitor with a haploid chromosome number of eight.  相似文献   

19.
Antheraea pernyi is a semi‐domesticated lepidopteran insect species valuable to the silk industry, human health, and ecological tourism. Owing to its economic influence and developmental properties, it serves as an ideal model for investigating divergence of the Bombycoidea super family. However, studies on the karyotype evolution and functional genomics of A. pernyi are limited by scarce genomic resource. Here, we applied PacBio sequencing and chromosome structure capture technique to assemble the first high‐quality A. pernyi genome from a single male individual. The genome is 720.67 Mb long with 49 chromosomes and a 13.77‐Mb scaffold N50. Approximately 441.75 Mb, accounting for 60.74% of the genome, was identified as repeats. The genome comprises 21,431 protein‐coding genes, 85.22% of which were functionally annotated. Comparative genomics analysis suggested that A. pernyi diverged from its common ancestor with A. yamamai ~30.3 million years ago, and that chromosome fission contributed to the increased chromosome number. The genome assembled in this work will not only facilitate future research on A. pernyi and related species but also help to progress comparative genomics analyses in Lepidoptera.  相似文献   

20.
Centromeres in eukaryotes are composed of tandem DNAs and retrotransposons. However, centromeric repeats exhibit considerable diversity, even among closely related species, and their origin and evolution are largely unknown. We conducted a genome-wide characterization of the centromeric sequences in sugarcane (Saccharum officinarum). Four centromeric tandem repeat sequences, So1, So103, So137 and So119, were isolated. So1 has a monomeric length of 137 bp, typical of a centromeric satellite, and has evolved four variants. However, these So1 variants had distinct centromere distributions and some were unique to an individual centromere. The distributions of the So1 variants were unexpectedly consistent among the Saccharum species that had different basic chromosome numbers or ploidy levels, thus suggesting evolutionary stability for approximately 7 million years in sugarcane. So103, So137 and So119 had unusually longer monomeric lengths that ranged from 327 to 1371 bp and lacked translational phasing on the CENH3 nucleosomes. Moreover, So103, So137 and So119 seemed to be highly similar to retrotransposons, which suggests that they originated from these mobile elements. Notably, all three repeats were flanked by direct repeats, and formed extrachromosomal circular DNAs (eccDNAs). The presence of circular molecules for these retrotransposon-derived centromeric satellites suggests an eccDNA-mediated centromeric satellite formation pathway in sugarcane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号