首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The oxidation reaction between cerium(IV) and Tween 85 in sulfuric acid medium produced weak chemiluminescence (CL). In this paper, it was found that citrate could strongly enhance the CL of cerium(IV)–Tween 85–polyphenol system. Based on studies of ultraviolet–visible spectra and CL spectra, the CL enhancement mechanism had been proposed. It was surmised that the light emission was from an excited oxygen molecular pair O2(1Δg)O2(1g). The maximum emission wavelength was about 478 nm. The effects of 17 amino acids and 29 organic compounds on cerium(IV)–Tween 85–citrate CL were investigated by a flow injection procedure. This study showed the present system had a wide application for the determination of these compounds. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
A simple and rapid flow‐injection chemiluminescence method has been developed for the determination of dithiocarbamate fungicide thiram based on the chemiluminescence reaction of thiram with ceric sulfate and quinine in aqueous sulfuric acid. The present method allowed the determination of thiram in the concentration range of 7.5–2500 ng/mL and the detection limit (signal‐to‐noise ratio = 3) was 7.5 ng/mL with sample throughput of 120/h. The relative standard deviation was 2.5% for 10 replicate analyses of 500 ng/mL thiram. The effects of foreign species including various anions and cations present in water at environmentally relevant concentrations and some pesticides were also investigated. The proposed method was applied to determine thiram in spiked natural waters using octadecyl bonded phase silica (C18) cartridges for solid‐phase extraction. The recoveries were in the range 99 ± 1 to 104 ± 1%. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
This paper reports a flow‐injection chemiluminescence method for the determination of ofloxacin (OFLX) using the Ru(bpy)2(CIP)2+–Ce(IV) system. Under the optimum conditions, the relative CL intensity was proportional to the concentration of OFLX in the range 3.0 × 10–8–1.0 × 10–5 mol/L and the detection limit was 4.2 × 10–9 mol/L. The proposed method has been successfully applied to the determination of ofloxacin in pharmaceuticals and human urine. The chemiluminescence mechanism of the system is also discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
A simple, rapid chemiluminescence (CL) method was described for the determination of piroxicam, a commonly used analgesic agent drug. A strong CL signal was detected when cerium(IV) sulphate was injected into tris‐(4,7‐diphenyl‐1,10‐phenanthrolinedisulphonic acid) ruthenium(II) (RuBPS)–piroxicam solution. The CL signal was proportional to the concentration of piroxicam in the range 2.8 × 10–8–1.2 × 10–5 mol/L. The detection limit was 2 × 10–8 mol/L and the relative standard deviation (RSD) was 3.7% (c = 7.0 × 10–7 mol/L piroxicam; n = 11). The proposed method was applied to the determination of piroxicam in pharmaceutical preparations in capsules, spiked serum and urine samples with satisfactory results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
The reaction of soluble manganese (IV) with sulphite in acidic condition was found to elicit weak chemiluminescence (CL). The CL signal was remarkably enhanced in the presence of three fluoroquinolones, viz. norfloxacin, ofloxacin and ciprofloxacin. Based on these observations, a new flow-injection CL method was developed for the determination of these fluoroquinolones. The method allows determination in the range 5.0 x 10(-8)-1.0 x 10(-6) mol/L for norfloxacin, 1.0 x 10(-7)-8.0 x 10(-6) mol/L for ofloxacin and 1.0 x 10(-7)-3.0 x 10(-5) mol/L for ciprofloxacin, with detection limits of 3 x 10(-8) mol/L, 5 x 10(-8) mol/L and 3 x 10(-8) mol/L, respectively. The method was applied to the determination of fluoroquinolones in pharmaceutical preparations.  相似文献   

6.
Chemiluminescence (CL) of the rhodamine 6‐G‐diperiodatonickelate (IV) (Rh6‐G‐Ni(IV) complex) in the presence of Brij‐35 was examined in an alkaline medium and implemented using flow‐injection analysis to analyze Mn(II) in natural waters. Brij‐35 was identified as the surfactant of choice that enhanced CL intensity by about 62% of the reaction. The calibration curves were linear in the range 1.7 × 10?3 – 0.2 (0.9990, n = 7) and 8.0 × 10?4 – 0.1 μg ml?1 (0.9990, n = 7) with limits of detection (LODs) (S:N = 3) of 5.0 × 10?4 and 2.4 × 10?4 μg ml?1 without and with using an in‐line 8‐hydroxyquinoline (8‐HQ) resin mini‐column, respectively. The sample throughput and relative standard deviation were 200 h?1 and 1.7–2.2% in the range studied respectively. Mn(II) concentrations in certified reference materials and natural water samples was successfully determined. A brief discussion about the possible CL reaction mechanism is also given. In addition, analysis of V(III), Cr(III) and Fe(II) was also performed without and with using an in‐line 8–HQ column and selective elution of each metal ion was achieved by adjusting the pH of the sample carrier stream with aqueous HCl solution.  相似文献   

7.
In this paper, a novel chemiluminescent (CL) method for the determination of benzhexol has been developed by combining the flow injection technique and its sensitizing effect on the weak CL reaction between sulfite and acidic cerium(IV). A mechanism for the CL reaction has been proposed on the basis of CL spectra. Under the optimized conditions, the proposed method allows the measurement of benzhexol hydrochloride over the range 0.1–10 μg/mL with a correlation coefficient of 0.9992 (n = 8), a detection limit of 0.02 μg/mL (3σ), and a relative standard deviation for 2.0 μg/mL benzhexol (n = 11) of 1.65%. The utility of this method was demonstrated by determining benzhexol hydrochloride in tablets. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Rapid, simple and highly sensitive flow‐injection (FI) chemiluminescence (CL) and flow‐injection electrogenerated chemiluminescence (ECL) methods were developed for the determination of escitalopram oxalate (ESC), a selective serotonin reuptake inhibitor used as an antidepressant drug. The CL method was based on the CL reaction of ESC with acidic cerium(IV) and tris(2,2'‐bipyridyl)ruthenium(II) (Ru). Various experimental parameters affecting CL intensity were carefully studied and optimised. The method enabled the determination of 0.001‐50 µg/mL of ESC in bulk form with a correlation coefficient r = 0.9999. The limit of detection (LOD) was 0.01 ng/mL (S/N = 3). The ECL method was based on the ECL reaction of Ru with the drug in an acidic medium, permitting the determination of ESC in the range of 0.00001‐70 µg/mL with r = 0.9999 and LOD of 1 x 10‐4 ng/mL. The proposed methods were applied to the determination of ESC in commercial tablets. The results were compared statistically with those obtained from a published method using t‐ and F‐tests. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A flow injection method with chemiluminescence detection is reported for the determination of vitamin A. The method is based on the enhancement effect of vitamin A on chemiluminescence of tris(2,2′‐bipyridyl)Ru(II)–Ce(IV) in acidic medium. The proposed procedure is used to quantitate vitamin A in the range 1.0–100 × 10?6 mol/L with a correlation coefficient of 0.9991 (n = 9) and relative standard deviation in the range 1.2–2.3% (n = 4). The limit of detection (3 × blank) was 8.0 × 10?8 mol/L with a sample throughput of 100/h. The effect of common excipients used in pharmaceutical formulations and some clinically important compounds was also studied. The method was applied to determine vitamin A in pharmaceutical formulations and the results obtained were in reasonable agreement with the amount quoted. The results were compared using spectrophotometric method and no significant difference was found between the results of the two methods at 95% confidence limit. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
A new chemiluminescence (CL) method is described for the determination of synephrine. It is based on the reaction between synephrine and Ce(IV) in a nitric acid medium and measurement of the CL intensity produced by rhodamine B used as a luminophore, similar to luminol or lucigenin in basic media, instead of as a sensitizer. In the optimum conditions, the increase of CL intensity was correlated with synephrine concentration over the range 5.0 x 10(-9)-1.0 x 10(-6) g/mL with a detection limit of 1.0 x 10(-9) g/mL. The relative standard deviation (RSD) was 2.9% for 1.0 x 10(-7) g/mL synephrine (n = 11). The method was applied to the determination of a drug in herbal products, citrus fruit and biological samples, with satisfactory results. The results given by the proposed method are in good agreement with those given by HPLC-UV and UV spectrophotometry.  相似文献   

11.
Chemiluminescence (CL) detection for the determination of estrogen benzoate, using the reaction of tris(1,10–phenanthroline)ruthenium(II)–Na2SO3–permanganate, is described. This method is based on the CL reaction of estrogen benzoate (EB) with acidic potassium permanganate and tris(1,10–phenanthroline)ruthenium(II). The CL intensity is greatly enhanced when Na2SO3 is added. After optimization of the different experimental parameters, a calibration graph for estrogen benzoate is linear in the range 0.05–10 µg/mL. The 3 s limit of detection is 0.024 µg/mL and the relative standard deviation was 1.3% for 1.0 µg/mL estrogen benzoate (n = 11). This proposed method was successfully applied to commercial injection samples and emulsion cosmetics. The mechanism of CL reaction was also studied. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A simple chemiluminometric method using flow injection has been developed for the determination of laevodopa, based on its sensitizing effect on the weak chemiluminescence (CL) reaction between Na2SO3 and acidic KMnO4. Under optimum experimental conditions, the CL intensity was linearly related to the concentration of laevodopa from 3.4 × 10–8 to 2.4 × 10–5 mol/L and the detection limit was 1.1 × 10–8 mol/L (s:n = 3). The relative standard deviation (RSD) of the proposed method calculated from 20 replicate injection of 3 × 10–7 mol/L laevodopa was 3.3%. The correlation coefficient was 0.997. The method was successfully applied to the determination of laevodopa in commercial pharmaceutical formulations and spiked urine samples. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Fang Zhao  Qi Fan  Huan Cai 《Luminescence》2014,29(3):219-224
A novel, rapid and sensitive chemiluminescence (CL) method combined with flow‐injection (FI) has been established for the estimation of olanzapine. This method is based on the CL signal generated between N‐chlorosuccinimide and olanzapine in an alkaline medium in the presence of calcein and Zn(II). Under optimum conditions, the CL signal was proportional to the olanzapine concentration ranging from 1.0 × 10‐10 to 3.0 × 10‐7 g/mL. The detection limit is 8.9 × 10‐11 g/mL olanzapine (3σ) and the relative standard deviation for 3.0 × 10‐9 g/mL of olanzapine is 1.9% (n = 11). The current CL method was applied to determine olanzapine in pharmaceutical formulations and biological fluids with satisfactory results. The possible CL reaction mechanism is discussed briefly. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Based on the chemiluminescence (CL) phenomenon of peroxymonosulfate (PMS) and Tb(III) enhanced by its ligand in a micelle microenvironment, a fast and sensitive flow injection CL method for PMS detection was proposed and applied to the analysis of different samples and PMS decomposition. Under the optimized conditions, a linear range was obtained from 4.0 × 10–6 mol L–1 to 2.0 × 10–4 mol L–1 with a high correlation coefficient (r = 0.9997), detection limit of 5.0 × 10–7 mol L–1 (S/N = 3) and relative standard deviation of 2.4% for 1.0 × 10–5 mol L–1 PMS (n = 9). This was successfully applied to the determination of PMS in Virkon powder, tap water, and swimming pool water samples with satisfactory recoveries from 94.8% to 104.8% . In particular, the analytical frequency could be as fast as five samples per minute because there was no reaction step before analysis and the CL phenomenon was instantaneous. Therefore, this CL method has also been successfully applied to investigate the PMS decomposition profiles in carbon material (carbon nanotubes, carbon nanofibres, activated carbon and graphene oxide) catalysis systems, which followed pseudo‐first‐order kinetics with good correlation coefficients (r > 0.9305). Quenching experiments and electron spin resonance spectra verified that the CL phenomenon was due to the formation of singlet oxygen, and that hydroxyl and sulfate radicals might be important in the generation of singlet oxygen. Tb(III) is the luminescent emitter according to the characteristics emission bands of the fluorescence and CL spectra in different media.  相似文献   

15.
It was found that meloxicam could enhance the chemiluminescence (CL) of the tris(2,2'‐bipyridine) ruthenium(II)–Ce(IV) system in the medium of sulfate acid. Based on this phenomenon a new flow‐injection system with chemiluminescent detection has been proposed for determination of meloxicam. Under optimum conditions, meloxicam had a good linear relationship with the CL intensity in the concentration range of 6.0  10?4 to 1.0 µg/mL and the detection limit was 3.7 × 10?4 µg/mL. The proposed method was applied to detect meloxicam in tablets and a satisfactory recovery was obtained. The possible mechanism for this CL system is also discussed in this paper. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
A new chemiluminescence (CL) method using flow injection has been described for the rapid and sensitive determination of promazine hydrochloride (PMH). The method is based on the CL reaction of PMH with tris(1,10 phenanthroline)ruthenium(II), [Ru(phen)32+] and Ce(IV) in sulfuric acid medium. Effects of chemical variables were investigated employing central composite design and response surface methodology. Under the optimum conditions, the CL intensity was proportional to the concentration of the drug in solution over the ranges 0.020–0.32 and 0.32–32 µg/mL. The limit of detection (signal‐to‐noise ratio = 3) was 0.012 µg/mL. The method was applied successfully to the determination of PMH in drug formulations and human serum (recovery percentages between 96.7 and 105.0%). The relative standard deviation for 11 replicate determinations of 1.5 µg/mL of PMH was 1.7%. The minimum sampling rate was 100 samples per hour. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
《Luminescence》2005,20(1):20-24
It was found that amoxycillin can react with potassium permanganate in an acidic medium to produce chemiluminescence, which is greatly enhanced by formaldehyde. The optimum conditions for this chemiluminescent reaction were studied in detail using a flow‐injection system. The experimental results indicate that, under optimum conditions, the chemiluminescence intensity is linearly related to the concentration of amoxycillin in the range 5.48 × 10?8–2.74 × 10?6 mol[sol ]L, with a detection limit (3σ) of 4.1 × 10?8 mol[sol ]L. The relative standard deviation was 1.0% at 1.1 × 10?6 mol[sol ]L amoxycillin (n = 11 measurements). This method has the advantages of high sensitivity, fast response and ease of operation. The method was successfully applied to the determination of amoxycillin in raw medicines and capsules. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
A two‐channel flow‐injection (FI) method is reported for the determination of iodide and iodine by its enhancement effect on the Ru(bpy)33+–NADH chemiluminescence (CL) system. The limit of detection (3 s of blank) was 1.0 × 10–9 mol/L iodide/iodine, with a sample throughput of 60/h. The calibration graphs over the range 1.0–50 × 10–8 mol/L gave correlation coefficients of 0.9994 and 0.999 (n = 5) with relative standard deviations (RSD; n = 4) of 1.0–2.5%, respectively. The effects of interfering cations, anions and some organic compounds were also studied. The method was applied to iodized salts and pharmaceutical samples and the results obtained were in good agreement with the value quoted. The CL method developed was compared with spectrophotometric method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
A post‐chemiluminescence (PCL) phenomenon was observed when chloramphenicol was injected into a mixture of luminol and potassium periodate after the chemiluminescence (CL) reaction of luminol–potassium periodate had finished. The possible reaction mechanism was proposed based on studies of the CL kinetic characteristics, the CL spectra, the fluorescence spectra and the UV‐vis absorption spectra of the related substances. Based on the PCL reaction, a rapid and sensitive method for the determination of chloramphenicol was established. The linear response range was 6.0 × 10?7–1.0 × 10?5 mol/L, with a correlation coefficient of 0.9986. The relative standard deviation (RSD) for 5.0 × 10?6 mol/L chloramphenicol was 2.3% (n = 11). The detection limit was 1.6 × 10?7 mol/L. The method has been applied to the determination of chloramphenicol in pharmaceutical samples with satisfactory results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
The chemiluminescence (CL) reaction of acyclovir (ACV)–potassium permanganate, with formaldehyde as an enhancer, was investigated by the flow‐injection system, and a new method is reported for the determination of ACV on the basis of the reaction. The method is rapid, effective and simple for the determination of acyclovir in the range 0.2–80 mg/L, with a limit of detection of 0.06 mg/L (3 S:N), a relative standard deviation (RSD) of 3.7% for the determination of 1.0 mg/L acyclovir solution in 11 repeated measurements. The method has been applied to the determination of acyclovir in pharmaceuticals, with satisfactory results. The possible reaction mechanism is also discussed briefly. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号