首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The clustering and diffusion of C71‐butyric acid methyl ester (PC71BM) in poly(3‐hexylthiophene) (P3HT) has been studied using single layer blend and bilayer organic field‐effect transistors (OFETs) and by atomic force microscopy (AFM). P3HT:PC71BM blend based OFETs were found to undergo phase‐segregation upon annealing, which was detectable as a fall in electron mobility with increasing annealing temperature. By employing carefully designed bilayer P3HT:PC71BM OFETs, the diffusion‐properties of PC71BM in P3HT could additionally be inferred from electron mobility measurements. It was found that the prerequisite annealing temperatures for detectable PC71BM clustering and diffusion in P3HT was approximately 20 °C higher than for PC61BM. The diffusion coefficient of PC61BM in P3HT was found to be several times higher that that of PC71BM. The present work provides unique insights into the diffusion process of fullerenes in conjugated polymers and could prove highly valuable for future materials development and device optimization.  相似文献   

2.
Enhanced power conversion efficiency (PCE) is reported in inverted polymer solar cells when an electron‐rich polymer nanolayer (poly(ethyleneimine) (PEI)) is placed on the surface of an electron‐collecting buffer layer (ZnO). The active layer is made with bulk heterojunction films of poly[[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl]] (PTB7) and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM). The thickness of the PEI nanolayer is controlled to be 2 nm to minimize its insulating effect, which is confirmed by X‐ray photoelectron spectroscopy and optical absorption measurements. The Kelvin probe and ultraviolet photoelectron spectroscopy measurements demonstrate that the enhanced PCE by introducing the PEI nanolayer is attributed to the lowered conduction band energy of the ZnO layer via the formation of an interfacial dipole layer at the interfaces between the ZnO layer and the PEI nanolayer. The PEI nanolayer also improves the surface roughness of the ZnO layer so that the device series resistance can be noticeably decreased. As a result, all solar cell parameters including short circuit current density, open circuit voltage, fill factor, and shunt resistance are improved, leading to the PCE increase up to ≈8.9%, which is close to the best PCE reported using conjugated polymer electrolyte films.  相似文献   

3.
Highly efficient tandem and semitransparent (ST) polymer solar cells utilizing the same donor polymer blended with [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) as active layers are demonstrated. A high power conversion efficiency (PCE) of 8.5% and a record high open‐circuit voltage of 1.71 V are achieved for a tandem cell based on a medium bandgap polymer poly(indacenodithiophene‐co‐phananthrene‐quinoxaline) (PIDT‐phanQ). In addition, this approach can also be applied to a low bandgap polymer poly[2,6‐(4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b′]dithiophene)‐alt‐4,7‐(5‐fluoro‐2,1,3‐benzothia‐diazole)] (PCPDTFBT), and PCEs up to 7.9% are achieved. Due to the very thin total active layer thickness, a highly efficient ST tandem cell based on PIDT‐phanQ exhibits a high PCE of 7.4%, which is the highest value reported to date for a ST solar cell. The ST device also possesses a desirable average visible transmittance (≈40%) and an excellent color rendering index (≈100), permitting its use in power‐generating window applications.  相似文献   

4.
Polymer solar cells (PSCs) are fabricated without solvent additives using a low‐bandgap polymer, PBDTTT‐C‐T, as the donor and [6,6]‐phenyl‐C61‐butyric‐acid‐methyl‐ester (PC61BM) as the acceptor. Donor‐acceptor blend and layer‐by‐layer (LL) solution process are used to form active layers. Relative to the blend devices, the LL devices exhibit stronger absorption, better vertical phase separation, higher hole and electron mobilities, and better charge extraction at correct electrodes. As a result, after thermal annealing the LL devices exhibit an average power conversion efficiency (PCE) of 6.86%, which is much higher than that of the blend devices (4.31%). The best PCE of the LL devices is 7.13%, which is the highest reported for LL processed PSCs and among the highest reported for PC61BM‐based single‐junction PSCs.  相似文献   

5.
The trap states in three fullerene derivatives, namely PC61BM ([6,6]‐phenyl C61 butyric acid methyl ester), bisPC61BM (bis[6,6]‐phenyl C61 butyric acid methyl ester) and PC71BM ([6,6]‐phenyl C71 butyric acid methyl ester), are investigated by means of thermally stimulated current measurements (TSC). Thereby, the lower limit of the trap densities for all studied methanofullerenes is on the order of 1022 m?3, with the highest trap density in bisPC61BM and the lowest in PC61BM. Fractional TSC measurements on PC61BM reveal a broad trap distribution instead of discrete trap levels, with activation energies ranging from 15 meV to 270 meV and the maximum at about 75 meV. The activation energies of the most prominent traps in the other two fullerene derivatives are significantly higher, at 96 meV and 223 meV for PC71BM and 184 meV for bisPC61BM, respectively. The influence of these findings on the performance of organic solar cells is discussed.  相似文献   

6.
A universal strategy for efficient light trapping through the incorporation of gold nanorods on the electron transport layer (rear) of organic photovoltaic devices is demonstrated. Utilizing the photons that are transmitted through the active layer of a bulk heterojunction photovoltaic device and would otherwise be lost, a significant enhancement in power conversion efficiency (PCE) of poly[N‐9′‐heptadecanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)]:phenyl‐C71‐butyric acid methyl ester (PCDTBT:PC71BM) and poly[[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b] thiophenediyl]] (PTB7):PC71BM by ≈13% and ≈8%, respectively. PCEs over 8% are reported for devices based on the PTB7:PC71BM blend. A comprehensive optical and electrical characterization of our devices to clarify the influence of gold nanorods on exciton generation, dissociation, charge recombination, and transport inside the thin film devices is performed. By correlating the experimental data with detailed numerical simulations, the near‐field and far‐field scattering effects are separated of gold nanorods (Au NRs), and confidently attribute part of the performance enhancement to the enhanced absorption caused by backscattering. While, a secondary contribution from the Au NRs that partially protrude inside the active layer and exhibit strong near‐fields due to localized surface plasmon resonance effects is also observed but is minor in magnitude. Furthermore, another important contribution to the enhanced performance is electrical in nature and comes from the increased charge collection probability.  相似文献   

7.
Increasing the lifetime of polymer based organic solar cells is still a major challenge. Here, the photostability of bulk heterojunction solar cells based on the polymer poly[4,4′‐bis(2‐ethylhexyl)dithieno[3,2‐b:2′,3′‐d]silole)‐2,6‐diyl‐alt‐[2,5‐bis(3‐tetradecylthiophen‐2‐yl)thiazole[5,4‐d]thiazole)‐1,8‐diyl] (PDTSTzTz) and the fullerene [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC60BM) under inert atmosphere is investigated. Correlation of electrical measurements on complete devices and UV‐vis absorption measurements as well as high‐performance liquid chromatography (HPLC) analysis on the active materials reveals that photodimerization of PC60BM is responsible for the observed degradation. Simulation of the electrical device parameters shows that this dimerization results in a significant reduction of the charge carrier mobility. Both the dimerization and the associated device performance loss turn out to be reversible upon annealing. BisPC60BM, the bis‐substituted analog of PC60BM, is shown to be resistant towards light exposure, which in turn enables the manufacture of photostable PDTSTzTz:bisPC60BM solar cells.  相似文献   

8.
We explore the interrelation between density of states, recombination kinetics, and device performance in efficient poly[4,8‐bis‐(2‐ethylhexyloxy)‐benzo[1,2‐b:4,5‐b']dithiophene‐2,6‐diyl‐alt‐4‐(2‐ethylhexyloxy‐1‐one)thieno[3,4‐b]thiophene‐2,6‐diyl]:[6,6]‐phenyl‐C71‐butyric acid methyl ester (PBDTTT‐C:PC71BM) bulk‐heterojunction organic solar cells. We modulate the active‐layer density of states by varying the polymer:fullerene composition over a small range around the ratio that leads to the maximum solar cell efficiency (50–67 wt% PC71BM). Using transient and steady‐state techniques, we find that nongeminate recombination limits the device efficiency and, moreover, that increasing the PC71BM content simultaneously increases the carrier lifetime and drift mobility in contrast to the behavior expected for Langevin recombination. Changes in electronic properties with fullerene content are accompanied by a significant change in the magnitude or energetic separation of the density of localized states. Our comprehensive approach to understanding device performance represents significant progress in understanding what limits these high‐efficiency polymer:fullerene systems.  相似文献   

9.
Significantly increased power conversion efficiency (PCE) of polymer solar cells (PSCs) is achieved by applying a plasmonic enhanced light trapping strategy to a low bandgap conjugated polymer, poly(indacenodithiophene‐ co‐phananthrene‐quinoxaline) (PIDT‐PhanQ) and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) based bulk‐heterojunction (BHJ) system. By doping both the rear and front charge‐selecting interfacial layers of the device with different sizes of Au NPs, the PCE of the devices is improved from 6.65% to 7.50% (13% enhancement). A detailed study of processing, characterization, microscopy, and device fabrication is conducted to understand the underlying mechanism for the enhanced device performance. The success of this work provides a simple and generally applicable approach to enhance light harnessing of low bandgap polymers in PSCs.  相似文献   

10.
The morphology, photophysics, and device performance of solar cells based on the low bandgap polymer poly[[2,6′‐4,8‐di(5‐ethylhexylthienyl)benzo[1,2‐b;3,3‐b]dithiophene]3‐fluoro‐2[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl (PBDTTT‐EFT) (also known as PTB7‐Th) blended with different fullerene acceptors: Phenyl‐C61‐butyric acid methyl ester (PC61BM), phenyl‐C71 ‐butyric acid methyl ester (PC71BM), or indene‐C60 bisadduct (ICBA) are correlated. Compared to PC71 BM‐based cells – which achieve a power conversion efficiency (PCE) of 9.4% – cells using ICBA achieve a higher open‐circuit voltage (VOC) of 1.0 V albeit with a lower PCE of 7.1%. To understand the origin of this lower PCE, the morphology and photophysics have been thoroughly characterized. Hard and soft X‐ray scattering measurements reveal that the PBDTTT‐EFT:ICBA blend has a lower crystallinity, lower domain purity, and smaller domain size compared to the PBDTTT‐EFT:PC71BM blend. Incomplete photoluminescence quenching is also found in the ICBA blend with transient absorption measurements showing faster recombination dynamics at short timescales. Transient photovoltage measurements highlight further differences in recombination at longer timeframes due to the more intermixed morphology of the ICBA blend. Interestingly, a mild thermal treatment improves the performance of PBDTTT‐EFT:ICBA cells which is exploited in the fabrication of a homo PBDTTT‐EFT:ICBA tandem solar cell with PCE of 9.0% and VOC of 1.93 V.  相似文献   

11.
The use of fullerene as acceptor limits the thermal stability of organic solar cells at high temperatures as their diffusion inside the donor leads to phase separation via Ostwald ripening. Here it is reported that fullerene diffusion is fully suppressed at temperatures up to 140 °C in bulk heterojunctions based on the benzodithiophene‐based polymer (the poly[[4,8‐bis[(2‐ethylhexyl)oxy]‐benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]‐thieno[3,4‐b]thiophenediyl]], (PTB7) in combination with the fullerene derivative [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC70BM). The blend stability is found independently of the presence of diiodooctane (DIO) used to optimize nanostructuration and in contrast to PTB7 blends using the smaller fullerene derivative PC70BM. The unprecedented thermal stability of PTB7:PC70BM layers is addressed to local minima in the mixing enthalpy of the blend forming stable phases that inhibit fullerene diffusion. Importantly, although the nanoscale morphology of DIO processed blends is thermally stable, corresponding devices show strong performance losses under thermal stress. Only by the use of a high temperature annealing step removing residual DIO from the device, remarkably stable high efficiency solar cells with performance losses less than 10% after a continuous annealing at 140 °C over 3 days are obtained. These results pave the way toward high temperature stable polymer solar cells using fullerene acceptors.  相似文献   

12.
A new charge recombination layer for inverted tandem polymer solar cells is reported. A bilayer of MoOX/Al2O3:ZnO nanolaminate is shown to enable efficient charge recombination in inverted tandem cells. A polymer surface modification on the MoOX/Al2O3:ZnO nanolaminate bilayer increases the work function contrast between the two outward surfaces of the charge recombination layer, further improving the performance of tandem solar cells. An analysis of the electrical, optical, and surface properties of the charge recombination layer is presented. Inverted tandem polymer solar cells, with two photoactive layers comprising poly (3‐hexylthiophene) (P3HT):indene‐C60 bisadduct (IC60BA) for the bottom cell and poly[(4,8‐bis‐(2‐ethylhexyloxy)‐benzo[1,2‐b:4,5‐b']dithiophene)‐2,6‐diyl‐alt‐(4‐(2‐ethylhexanoyl)‐thieno[3,4‐b]thiophene))‐2,6‐diyl] (PBDTTT‐C):[6,6]‐phenyl C61 butyric acid methyl ester (PC60BM) for the top cell, yield an open‐circuit voltage of 1481 mV ± 15 mV, a short‐circuit current density of 7.1 mA cm?2 ± 0.1 mA cm?2, and a fill factor of 0.62 ± 0.01, resulting in a power conversion efficiency of 6.5% ± 0.1% under simulated AM 1.5G, 100 mW cm?2 illumination.  相似文献   

13.
A solution‐processed neutral hole transport layer is developed by in situ formation of MoO3 in aqueous PEDOT:PSS dispersion (MoO3‐PEDOT:PSS). This MoO3‐PEDOT:PSS composite film takes advantage of both the highly conductive PEDOT:PSS and the ambient conditions stability of MoO3; consequently it possesses a smooth surface and considerably reduced hygroscopicity. The resulting bulk heterojunction polymer solar cells (BHJ PSC) based on poly[2,3‐bis‐(3‐octyloxyphenyl)quinoxaline‐5,8‐diyl‐alt‐thiophene‐2,5‐diyl] (TQ1):[6,6]‐phenyl‐C71‐butyric acid methyl ester (PC70BM) blends using MoO3‐PEDOT:PSS composite film as hole transport layer (HTL) show considerable improvement in power conversion efficiency (PCE), from 5.5% to 6.4%, compared with the reference pristine PEDOT:PSS‐based device. More importantly, the device with MoO3‐PEDOT:PSS HTL shows considerably improved stability, with the PCE remaining at 80% of its original value when stored in ambient air in the dark for 10 days. In comparison, the reference solar cell with PEDOT:PSS layer shows complete failure within 10 days. This MoO3‐PEDOT:PSS implies the potential for low‐cost roll‐to‐roll fabrication of high‐efficiency polymer solar cells with long‐term stability at ambient conditions.  相似文献   

14.
Although degradation mechanisms in organic photovoltaic devices continue to receive increased attention, it is only recently that the initial light‐induced failure, or so‐called burn‐in effect, has been considered. Both prototypical polythiophene:fullerene and polycarbazole:fullerene systems exhibit an exponential performance loss of ≈40% upon 150 h of continuous solar illumination. While the decrease in both the short‐circuit current (JSC) and open‐circuit voltage (VOC) is the origin of performance loss in poly(3‐hexylthiophene):[6,6]‐phenyl‐C61‐butyric acid methyl ester (P3HT:PC60BM), in poly(N‐9′‐hepta‐decanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)):[6,6]‐phenyl‐C71‐butyric acid methyl ester (PCDTBT:PC70BM) the decline of the fill factor dominates. By systematic variation of the interface layers, active layer thickness, and acceptor in polythiophene:fullerene cells, the loss in JSC is ascribed to a degradation in the bulk of the P3HT:PC60BM, while the drop in VOC is reversible and arises from charge trapping at the contact interfaces. By replacing the C60 fullerene derivative with a C70 derivative, or by modifying the electron transport layer, the JSC or VOC, respectively, are stabilized. These insights prove that the burn‐in process stems from multiple concurrent failure mechanisms. Comparing the ageing and recovery processes in P3HT and PCDTBT blends results in the conclusion that their interface failures differ in nature and that burn‐in is a material dependent, rather than an intrinsic, failure mechanism.  相似文献   

15.
Donor–acceptor (D‐A) type π‐conjugated copolymers with crystalline behavior have been extensively investigated as donor semiconductors in organic photovoltaics (OPVs). On the other hand, the development of high‐performance amorphous donor materials is still behind. The amorphous donor copolymer DTS‐C0(F2) consisting of dithieno[3,2‐b:2′,3′‐d]silole ( DTS ) donor unit and the recently developed fluorine‐substituted naphtho[2,3‐c]thiophene‐4,9‐dione ( C0(F2) ) acceptor unit shows moderate photovoltaic performance upon blending with PC71BM. In this work, to enhance the hole‐transporting characteristics, a 3‐hexylthiophene ( HT ) spacer unit is integrated into the conjugated backbone, resulting in a new amorphous copolymer DTS‐HT‐C0(F2) . The strong electron‐accepting nature of C0(F2) allows the introduction of the HT spacer without affecting the frontier orbital energies and thus the D‐A character. Without using solvent additives and thermal annealing, OPVs based on DTS‐HT‐C0(F2) and [6,6]‐phenyl‐C71‐butyric acid methyl ester PC71BM show an improved power conversion efficiency of 9.12%. Investigation of the device physics unambiguously reveals that the hole mobility of the copolymer in the blend is increased by an order of magnitude by the introduction of HT , while keeping an amorphous film nature, leading to higher short‐circuit current density and fill factor. These results demonstrate the realization of high‐performance OPVs based on amorphous active layers.  相似文献   

16.
Solution‐processed zinc oxide nanocrystals (ZnO NCs) hybridized with insulating poly(ethylene glycol) (PEG) are introduced as a cathode interlayer in bulk heterojunction organic photovoltaic cells based on poly(3‐hexylthiophene) (P3HT):(6,6)‐phenyl‐C61 butyric acid methyl ester (PC61BM) blends. The performance of devices with ZnO‐PEG interlayers exhibit an excellent maximum power conversion efficiency (PCE) of 4.4% with a fill factor (FF) of 0.69 under optimized conditions. This enhanced device performance is attributed to decreased series resistance from the hole blocking properties of ZnO, as well as the facilitated electron transport due to the reduced area of ZnO domain boundaries upon addition of PEG. The addition of PEG also lowers the electron affinity of ZnO, which leads to a nearly Ohmic contact at the polymer/metal interface. Moreover, the ZnO‐PEG interlayer serves as an optical spacer that enhances light absorption and thereby increases the photocurrent. The addition of PEG permits control over layer thickness and refractive indices. Improved photon energy absorption is supported by optical simulations. Devices with highly stable metals such as Ag and Au also show dramatically enhanced performance comparable to conventional devices with Al cathode. Due to its simplicity and excellent characteristics, this multifunctional interlayer is suitable for high performance printed photovoltaic cells.  相似文献   

17.
Window integrated photovoltaics for automotive and building applications are a promising market segment for organic solar modules. Besides semi‐transparency, window integrated applications require a reasonable transparency perception and good color rendering properties in order to be suitable for realistic scene illumination. Here, the transmitted light through semi‐transparent organic solar cells comprising the polymer/fullerene blend poly[(4,4'‐bis(2‐ethylhexyl)dithieno[3,2‐b:2',3'‐d]silole)‐2,6‐diyl‐alt‐(2,1,3‐benzothiadiazole)‐4,7‐diyl]: [6,6]‐phenyl C71‐butric acid methyl ester (PSBTBT:PC70BM) as active layer and a sputtered aluminum doped zinc oxide cathode were found to exhibit a color neutral perception for the human eye and very good color rendering properties. Moreover, the electrical cell properties allow for efficient energy harvesting with an overall power conversion efficiency η ≈ 3%.  相似文献   

18.
Significant enhancement of P3HT (poly(3‐hexylthiophene)):PC61BM ([6,6]‐phenyl C61‐butyric acid methyl ester) photovoltaic devices using different patterns of electrospun Ag/PVP composite nanofibers, including nonwoven, aligned, and crossed patterns, is reported. The composite electrospun nanofibers are prepared using in situ reduction of silver (Ag) nanoparticles in Ag/poly(vinyl pyrrolidone) (PVP) via a two‐fluid coaxial electrospinning technique. The composition, crystalline orientation, and particle size of Ag are manipulated by controlling the core/shell solution concentration. The smallest diameter of the composite nanofibers leads to the highest orientation of the Ag nanoparticles and results in the largest conductivity due to geometric confinement. Such composite nanofibers exhibit the surface plasmon resonance (SPR) effect, which provides near field enhancement of electromagnetic field around active layer. Additionally, composite nanofibers with the crossed or nonwoven patterns further enhance high carrier mobility, compared to that of the aligned pattern. It leads to the 18.7% enhancement of the power conversion efficiency of photovoltaic cell compared to the parent device. The results indicate that the high conductivity and SPR effect of the Ag/PVP electrospun nanofibers can significantly improve the photocurrent and PCE, leading to promising organic solar cell applications.  相似文献   

19.
Poly(benzo[1,2‐b:4,5‐b′]dithiophene–alt–thieno[3,4‐c]pyrrole‐4,6‐dione) (PBDTTPD) polymer donors with linear side‐chains yield bulk‐heterojunction (BHJ) solar cell power conversion efficiencies (PCEs) of about 4% with phenyl‐C71‐butyric acid methyl ester (PC71BM) as the acceptor, while a PBDTTPD polymer with a combination of branched and linear substituents yields a doubling of the PCE to 8%. Using transient optical spectroscopy it is shown that while the exciton dissociation and ultrafast charge generation steps are not strongly affected by the side chain modifications, the polymer with branched side chains exhibits a decreased rate of nongeminate recombination and a lower fraction of sub‐nanosecond geminate recombination. In turn the yield of long‐lived charge carriers increases, resulting in a 33% increase in short circuit current (J sc). In parallel, the two polymers show distinct grazing incidence X‐ray scattering spectra indicative of the presence of stacks with different orientation patterns in optimized thin‐film BHJ devices. Independent of the packing pattern the spectroscopic data also reveals the existence of polymer aggregates in the pristine polymer films as well as in both blends which trap excitons and hinder their dissociation.  相似文献   

20.
The quest for new materials is one of the main factors propelling recent advances in organic photovoltaics. Star‐shaped small molecules (SSMs) have been proven promising candidates as perspective donor material due to the increase in numbers of excitation pathways caused by the degeneracy of the lowest unoccupied molecular orbital (LUMO) level. In order to unravel the pathways of the initial photon‐to‐charge conversion, the photovoltaic blends based on three different SSMs with a generic structure of N(phenylene‐nthiophene‐dicyanovinyl‐alkyl)3 (n = 1–3), and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) acceptor are investigated by ultrafast photoinduced absorption spectroscopy assisted by density functional theory calculations. It is shown that both electron transfer from SSMs to PC71BM and hole transfer from PC71BM to SSMs are equally significant for generation of long‐lived charges. In contrast, intramolecular (intra‐SSM) charge separation results in geminate recombination and therefore constitutes a loss channel. Overall, up to 60% of long‐lived separated charges are generated at the optimal PC71BM concentrations. The obtained results suggest that further improvement of the SSM‐based solar cells is feasible via optimization of blend morphology and by suppressing the intra‐SSM recombination channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号