首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of adenosine and some of its derivatives on beef protein kinase activity were investigated in vitro. Adenosine rapidly inhibited protein kinase activity in a dose-dependent manner. Significant inhibition occurred with 10 muM and half-maximal inhibition at 100 muM adenosine. Inhibition was almost complete with 5 mM adenosine. Inhibition was similar whether protein kinase activity was assayed with or without cyclic AMP. The inhibition by adenosine was reversed by increasing the concentration of ATP and Lineweaver-Burk analysis indicated that adenosine inhibition was competitive with ATP. Addition of adenosine deaminase to the incubation medium prevented the inhibition induced by adenosine. Intact 1 and N6 positions of adenosine were important for the inhibition since their modification was associated with loss of inhibition. Modification of the 8 position of adenosine decreased, but did not abolish, the inhibition. The 2 and 3 position of ribose did not seem to be critical since 2- and 3-deoxyadenosine produced inhibition similar to that of adenosine.  相似文献   

2.
H.Linton Wray  R.Richard Gray 《BBA》1977,461(3):441-459
Ca2+-activated ATPase (EC 3.6.1.15) in canine cardiac sarcoplasmic reticulum was stimulated 50–80% by cyclic adenosine 3′ : 5′-monophosphate. The relationship of this stimulation to cyclic AMP-dependent membrane phosphorylation with phosphoester bands was studied. Cyclic AMP stimulation of ATPase activity was specific for Ca2+-activated ATPase and was half-maximal at about 0.1 μM which is similar to the concentration required for half-maximal stimulation of membrane phosphorylation by endogenous cyclic AMP-stimulated protein kinase (EC 2.7.1.37). Cyclic AMP stimulation of Ca2+-activated ATPase was calcium dependent and maximal at calculated Ca2+ concentrations of 2.0 μM. Cyclic AMP-dependent Ca2+-activated ATPase correlated well with the cyclic AMP-dependent membrane phosphorylation of which 80% was 20 000 molecular weight protein identified by sodium dodecyl sulfate discontinuous polyacrylamide gel electrophoresis. In trypsin-treated microsomes, cyclic AMP did not stimulate Ca2+-activated ATPase or phosphorylation of the 20 000 molecular weight membrane protein. An endogenous calcium-stimulated protein kinase (probably phosphorylase b kinase) with an apparent Km for ATP of 0.21–0.32 mM was present and appeared to be involved in the cyclic AMP-dependent phosphorylation of the 20 000 molecular weight protein which was calcium dependent. Cyclic guanosine 3′ : 5′-monophosphate did not inhibit any of the stimulatory effects of cyclic AMP. These data suggest that the cyclic AMP stimulation of Ca2+-activated ATPase in cardiac sarcoplasmic reticulum is mediated by the 20 000 molecular weight phosphoprotein product of a series of kinase reactions similar to those activating phosphorylase b.  相似文献   

3.
Human placental adenosine kinase. Kinetic mechanism and inhibition   总被引:4,自引:0,他引:4  
The kinetic properties of human placental adenosine kinase, purified 3600-fold, were studied. The reaction velocity had an absolute requirement for magnesium and varied with the pH. Maximal activity was observed at pH 6.5 with a Mg2+:ATP ranging from 1:1 to 2:1. High concentrations of Mg2+ or free ATP were inhibitory. Double reciprocal plots of initial velocity studies yielded intersecting lines for both adenosine and MgATP2-. The Michaelis constant was 0.4 micro M for adenosine and 75 micro M for MgATP2-. Inhibition by adenosine was observed at concentrations greater than 2.5 micro M. AMP was a competitive inhibitor with respect to adenosine and a noncompetitive inhibitor with respect to ATP. ADP was a noncompetitive inhibitor with respect to adenosine and ATP. Hyperbolic inhibition was observed during noncompetitive inhibition of adenosine kinase by AMP and ADP. Other purine and pyrimidine nucleoside mono-, di-, and triphosphates were poor inhibitors in general. S-Adenosylhomocysteine and 2'-deoxyadenosine inhibited adenosine kinase. The data suggest that (a) MgATP2- is the true substrate of adenosine kinase, and both pH and [Mg2+] may regulate its activity; (b) the kinetic mechanisms of adenosine kinase is Ordered Bi Bi; and (c) adenosine kinase may be regulated by the concentrations of its products, AMP and ADP, but is relatively insensitive to other purine and pyrimidine nucleotides.  相似文献   

4.
Adenosine 5'-O(3-thiotriphosphate) in the control of phosphorylase activity   总被引:22,自引:0,他引:22  
Rabbit muscle phosphorylase b (EC 2.4.1.1) is converted to a thio-analog of phosphorylase a by phosphorylase kinase, Mg2+ and adenosine 5′-O(3-thiotriphosphate)(ATPγS). Conversion proceeds at one-fifth the rate obtained with ATP though the extent of reaction and final level of activation of the enzyme are the same. However, the thiophosphorylase a produced is resistant to phosphorylase phosphatase and, therefore, behaves as a competitive inhibitor with a KI of 3 μM, similar to the KM obtained with normal phosphorylase a. ATPγS can also be utilized by protein kinase in the activation of phosphorylase kinase at a rate similar to that obtained with ATP. It is hydrolyzed at 5 to 10 times the normal rate by the sarcoplasmic reticulum ATPase. When added to a muscle glycogen-particulate complex in the presence of Ca2+ and Mg2+, ATPγS triggers an activation of phosphorylase with simultaneous inhibition of phosphorylase phosphatase as previously observed with ATP.  相似文献   

5.
6.
Adenosine kinase activity in in vitro human peripheral blood monocyte and human pulmonary alveolar macrophage cultures undergoes significant increases, 3- to 10-fold, in both total and specific activity during 14 days culture. Increased activity in monocyte cultures was not detected during the first 3 days of culture. Adenosine kinase activity in both mononuclear phagocyte cell cultures had a pH optimum at 6.0 and activity was dependent on the concentration of ATP and magnesium; 5 mM ATP and 2.5 mM MgCl were optimal. Increased concentrations of ATP or magnesium were inhibitory. Both dATP and GTP served as phosphate donors in the absence of ATP; in contrast, pyrimidine triphosphates were poor donors. Enzyme activity was inhibited by 1 μM p-chloromercuribenzoate and substrate inhibition by excess adenosine was observed in 2-week pulmonary alveolar macrophage cultures but not in freshly isolated cells. The role of increased adenosine kinase activity in in vitro monocyte-macrophage differentiation is considered.  相似文献   

7.
A casein kinase was extracted from human erythrocyte cytosol and purified by ammonium sulfate precipitation, chromatography on DEAE and phosphocellulose, and affinity chromatography on ATP-agarose. This enzyme did not use histone as a substrate; its activity was not stimulated by cyclic nucleotides. The pH of optimal activity was 6.5. The enzyme had an absolute requirement of Mg2+ ions at an optimal concentration of 30 mM; activity was stimulated by Na+ and K+ at a maximal concentration of 0.125 M and inhibited by Ca2+. Casein was used as a substrate with a Km of 0.25 mg/ml; ATP was the preferential phosphoryl donor with a Km of 14.7 μM; GTP may be used with a lower yield and a Km of 26.3 μM. ADP was a competitive inhibitor of ATP with a Ki of 14 μM. 2–3 DPG was an allosteric inhibitor of ATP with an apparent Ki of 4.6 mM and a Hill coefficient of 3.8. Kinetic data indicate that the reaction follows a coordinated mechanism with ATP as the first substrate and subsequent formation of a ternary complex with the protein. SDS-PAGE of the purified enzyme showed two different peptide chains of molecular weight 35 000 and 25 000.  相似文献   

8.
9.
The inhibitory action of the flavonoid quercetin has been examined on the calcium-transport ATPase of synaptosomal vesicles and compared to that of two other flavonoids, morin and rutin. We have found that while quercetin caused a 50% inhibition of calcium transport at a concentration of 15 μM, morin and rutin had similar effects at concentrations of about 200 μM. A similar order of potency was observed also for ATP hydrolysis, though at higher concentrations. Quercetin also strongly inhibited phosphorylation of membrane proteins by ATP in synaptosomal vesicles. Rutin and morin had an almost negligible effect on membrane protein phosphorylation. The order of inhibitory potency of the flavonoids on the Ca2+-transport ATPase from synaptosomal vesicles: quercetin > morin > rutin, could be linked to their possible solubility in the membrane lipid phase since: (1) it paralleled their partitioning between a mixture of oil and water; (2) it paralleled their uptake from the reaction mixture by synaptosomal vesicles and phosphatidylcholine liposomes; (3) they had almost equal potency as inhibitors of the water soluble system of histone phosphorylation by protein kinase.  相似文献   

10.
DEAE-cellulose chromatography of the 20,000g supernatant fraction of homogenates of C-1300 murine neuroblastoma (clone N2a) yields one major and two minor peaks of cyclic AMP-dependent protein kinase activity. Assessment of the endogenous activation state of the enzyme(s) reveals that the enzyme is fully activated by the treatment of whole cells with adenosine (10 μM) in the presence of the phosphodiesterase inhibitor Ro 20 1724 (0.7 mM). This treatment produces a large elevation in the cyclic AMP content of the cells. The treatment of whole cells with adenosine alone (1–100 μM) or Ro 20 1724 alone (0.1–0.7 mM) produces minimal elevations in cyclic AMP but nevertheless causes significant activations of cyclic AMP-dependent protein kinase. The autophosphorylation of whole homogenates of treated and untreated cells was studied using [γ-32P] ATP, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Treatments which activate cyclic AMP-dependent protein kinase selectively stimulate the incorporation of 32P into several proteins. This stimulation is most prominent in the 15,000-dalton protein band. The addition of cyclic AMP to phosphorylation reactions containing homogenate of untreated cells stimulates the phosphorylation of the same protein bands. These results indicate that adenosine may have regulatory functions through its effect on the cyclic AMP: cyclic AMP-dependent protein kinase system.  相似文献   

11.
The transport of adenosine was studied in pure cultures of glial cells from chick embryo brain. In order to avoid complications in uptake measurements due to adenosine metabolism, cultures were depleted of ATP by incubation with cyanide and iodoacetate prior to addition of [3H]adenosine. Under the 5- to 25-s periods used for the transport assay, no adenosine metabolism could be detected. Initial rates of adenosine transport under these conditions obeyed the Michaelis-Menten relationship with Km = 370 μM and Vmax = 10.3 nmol/min/mg cell protein. ATP depletion or elimination of Na+ from the assay medium had no significant effect on initial rates of adenosine uptake. However, when assays were carried out under conditions of significant adenosine metabolism (10-min uptake in the absence of metabolic inhibitors), a high-affinity incorporation process could be demonstrated in the glial cells (Km = 12 μM; Vmax = 0.34 nmol/ min/mg protein). The transport activity expressed in ATP-depleted glial cells was most sensitive to inhibition by nitrobenzylthioinosine, dipyridamole, and N6-benzyladenosine. In decreasing order of potency, N6-methyladenosine, 2-chloroadenosine, inosine, and thymidine also blocked adenosine translocation in glial cultures. Thus, adenosine transport by cultured glial cells occurs by means of a low-affinity, facilitated diffusion system which is similar to the nucleoside transporter in cells of nonneural origin.  相似文献   

12.
A protein kinase (ATP: histone phosphotransferase) with high specificity for the phosphorylation of the very lysine-rich histone H1 has been partially purified and characterized from soybean hypocotyl. The enzyme has a molecular weight of about 48,500. Its activity and sedimentation behavior are refractory to cyclic nucleoside monophosphates. No significant amount of cyclic AMP or cyclic GMP binding activity could be detected in the crude or partially purified enzyme preparations. Km for ATP and histone H1 are 0.4 μM and 0.7 μM, respectively. The enzyme requires Mg2+ or Mn2+ for activity, while addition of 0.5 mM Ca2+, Zn2+ or Hg2+ results in 50% inhibition. Arginine-rich histones H3 and H4 are inhibitory to histone H1 phosphorylation; these histones affect the Vmax of the enzyme, but not the Km for histone H1.  相似文献   

13.
The involvement of protein kinase C in differentiation of rat adipocyte precursor cells in serum-free culture was evaluated by using various protein kinase inhibitors. Induction of adipose conversion, which was maximal after 10 days of culture in the presence of 5 μg/ml insulin, 10 μg/ml transferrin, and 200 pM triiodothyronine, was inhibited by the addition of protein kinase C inhibitors, H-7 and staurosporine, in a dose dependent fashion with the maximal effect at 10 μM and 10 nM, respectively. Inhibition of adipocyte differentiation by 12-O-tetradecanoylphorbol 13-acetate (10−8M), an activator of protein kinase C, was reversed by a concomitant addition of either 10 μM H-7 or 10 nM staurosporine. HA1004, a potent inhibitor of cAMP- and cGMP-dependent protein kinases, with minimal inhibitory activity on protein kinase C, did not affect adipose conversion. Furthermore, H-89, another isoquinoline derivative with a selective inhibitory action on cAMP-dependent protein kinase, was without effect on cellular differentiation. These results indicate that the potentiation of adipogenesis by H-7 and staurosporine is mediated by suppression of protein kinase C and that protein kinase C is involved in adipocyte differentiation in an inhibitory fashion.  相似文献   

14.
Both purinergic stimulation and activation of cystic fibrosis transmembrane conductance regulator (CFTR) increases Cl secretion and inhibit amiloride-sensitive Na+ transport. CFTR has been suggested to conduct adenosine 5′-triphosphate (ATP) or to control ATP release to the luminal side of epithelial tissues. Therefore, a possible mechanism on how CFTR controls the activity of epithelial Na+ channels (ENaC) could be by release of ATP or uridine 5′-triphosphate (UTP), which would then bind to P2Y receptors and inhibit ENaC. We examined this question in native tissues from airways and colon and in Xenopus oocytes. Inhibition of amiloride-sensitive transport by both CFTR and extracellular nucleotides was observed in colon and trachea. However, nucleotides did not inhibit ENaC in Xenopus oocytes, even after coexpression of P2Y2 receptors. Using different tools such as hexokinase, the P2Y inhibitor suramin or the Cl channel blocker 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS), we did not detect any role of a putative ATP secretion in activation of Cl transport or inhibition of amiloride sensitive short circuit currents by CFTR. In addition, N2,2′-O-dibutyrylguanosine 3′,5′-cyclic monophosphate (cGMP) and protein kinase G (PKG)-dependent phosphorylation or the nucleoside diphosphate kinase (NDPK) do not seem to play a role for the inhibition of ENaC by CFTR, which, however, requires the presence of extracellular Cl.  相似文献   

15.
Tyrosine-specific protein kinase (ATP: protein phosphotransferase, EC 2.7.1.37) activity was measured in normal human nonadherent peripheral blood lymphocytes using synthetic peptide substrates having sequence homologies with either pp60src or c-myc. A high level of tyrosine-specific protein kinase activity was found associated with the cell particulate fraction (100 000 × g pellet). High-pressure liquid chromatography and phosphoamino acid analysis of the synthetic peptide substrates substantiated the phosphorylation of tyrosine residues by the particulate fraction enzyme. The human enzyme was also capable of phosphorylating a synthetic random polymer of 80% glutamic acid and 20% tyrosine. Enzyme activity was half-maximal with 22 μM Mg·ATP and had apparent Km values for the synthetic peptides from 1.9 to 7.1 mM. The enzyme preferred Mg2+ to Mn2+ for optimal activity and was stimulated 2–5-fold by low levels (0.05%) of some ionic as well as non-ionic detergents including deoxycholate, Nonidet P-40 and Triton X-100. The enzyme activity was not stimulated by N6;O2′-dibutyryl cyclic AMP (100 μM), N6;O2′-dibutyryl cyclic GMP (100 μM), Ca2+ (200 μM), insulin (1 μg/ml) or homogeneous human T-cell growth factor (3 μg/ml) under the conditions used. Alkaline-resistant phosphorylation of particulate proteins in vitro revealed protein bands with Mr 59 000 and 54 000 suggesting that there are endogenous substrates for the human lymphocyte tyrosine protein kinase.  相似文献   

16.
There is evidence that extracellular adenosine can attenuate cardiac hypertrophy, but the mechanism by which this occurs is not clear. Here we investigated the role of adenosine receptors and adenosine metabolism in attenuation of cardiomyocyte hypertrophy. Phenylephrine (PE) caused hypertrophy of neonatal rat cardiomyocytes with increases of cell surface area, protein synthesis, and atrial natriuretic peptide (ANP) expression. These responses were attenuated by 5 μM 2-chloroadenosine (CADO; adenosine deaminase resistant adenosine analog) or 10 μM adenosine. While antagonism of adenosine receptors partially blocked the reduction of ANP expression produced by CADO, it did not restore cell size or protein synthesis. In support of a role for intracellular adenosine metabolism in regulating hypertrophy, the adenosine kinase (AK) inhibitors iodotubercidin and ABT-702 completely reversed the attenuation of cell size, protein synthesis, and expression of ANP by CADO or ADO. Examination of PE-induced phosphosignaling pathways revealed that CADO treatment did not reduce AKT(Ser??3) phosphorylation but did attenuate sustained phosphorylation of Raf(Ser33?) (24-48 h), mTOR(Ser2???) (24-48 h), p70S6k(Thr3??) (2.5-48 h), and ERK(Thr2?2/Tyr2??) (48 h). Inhibition of AK restored activation of these enzymes in the presence of CADO. Using dominant negative and constitutively active Raf adenoviruses, we found that Raf activation is necessary and sufficient for PE-induced mTORC1 signaling and cardiomyocyte hypertrophy. CADO treatment still blocked p70S6k(Thr3??) phosphorylation and hypertrophy downstream of constitutively active Raf, however, despite a high level phosphorylation of ERK(Thr202/Tyr204) and AKT(Ser??3). Reduction of Raf-induced p70S6k(Thr3??) phosphorylation and hypertrophy by CADO was reversed by inhibiting AK. Together, these results identify AK as an important mediator of adenosine attenuation of cardiomyocyte hypertrophy, which acts, at least in part, through inhibition of Raf signaling to mTOR/p70S6k.  相似文献   

17.
The rapid translocation of external ADP-[14C]by corn mitochondria is inhibited by high concentrations of atractyloside with enhanced inhibition occurring in the presence of Mg2+. This translocation is also inhibited by AMP or ATP but CDP, GDP, IDP or UDP have little effect. Backward exchange of internal ADP-[14C] occurs in the presence of AMP, ADP or ATP but is not promoted by other nucleoside diphosphates. It is suggested that the adenine nucleotide (AdN) carrier is specific for ADP and ATP and that apparent translocation of AMP is a result of adenylate kinase activity. The translocated ADP can be separated into 3 components: (1) atractyloside-insensitive binding; (2) carrier-bound ADP saturated at ca 30 μM external ADP; and (3) exchanged ADP saturated as ca 5 μM external ADP. It is suggested that the adenine nucleotide carrier of plant mitochondria possesses similar properties to the classical carrier of vertebrate mitochondria.  相似文献   

18.
Lymphocytes from normal subjects or patients with chronic lymphocytic leukemia are known to possess receptors for extracellular ATP termed P2Z purinoceptors whose physiological role is undefined. Addition of extracellular ATP (50–500 μM) to both normal and leukemic lymphocytes caused loss of binding of monoclonal antibodies to L-selectin (CD62L) on the cell surface. UTP, ADP, and adenosine (all at 500 μM) had no effect on L-selectin expression. Several features of the ATP-induced loss of L selectin indicate that this effect is mediated by lymphocyte P2Z purinoceptors. First the loss was attenuated in isotonic NaCl medium compared to 150 mM KCl medium. Second the loss of L-selectin was immediately halted by addition of Mg2+ ions in molar excess of ATP. The most potent nucleotide causing L-selectin loss was benzoylbenzoic ATP (>10 μM) which is also the most potent agonist for the P2Z purinoceptor. Finally preincubation of lymphocytes with oxidized ATP, an irreversible inhibitor of P2Z purinoceptors, also inhibited ATP induced loss of L-selectin. Extracellular ATP is known to open an ion channel associated with the P2Z purinoceptor on B-lymphocytes which allows influx of Ca2+. However, ATP-induced loss of L-selectin did not require extracellular Ca2+. Moreover addition of the calcium ionophore, ionomycin, had minimal effect on L-selectin expression. Staurosporine (500 nM), an inhibitor of protein kinase C, inhibited only 10% of ATP induced loss of L-selectin but completely inhibited the loss of L-selectin caused by 50 nM PMA. Thus extracellular ATP interacts with lymphocyte P2Z purinoceptors which leads to shedding of L-selectin via a pathway which requires neither Ca2+ influx nor activation of protein kinase C. ATP may have a physiological role in the loss of L-selectin which occurs during the interactions of lymphocytes with other cells. © 1996 Wiley-Liss, Inc.  相似文献   

19.
Potato tuber phosphofructokinase was purified 19·.6-fold by a combination of ethanol fractionation and DEAE-cellulose column chromatography. The enzyme was very unstable; its pH optimum was 8·0. Km for fructose-6-phosphate, ATP and Mg2+ was 2·1 × 10?4 M, 4·5 × 10?5 M and 4·0 × 10?4 M respectively. ITP, GTP, UTP and CTP can act as phosphate donors, but are less active than ATP. Inhibition of enzyme activity by high levels of ATP was reversed by increasing the concentration of fructose-6-phosphate; the affinity of enzyme for fructose-6-phosphate decreased with increasing concentration of ATP. 5′-AMP, 3′,5′-AMP, 3′-AMP, deoxy AMP, UMP, IMP, CMP, GMP, ADP, CDP, GDP and UDP did not reverse the inhibition of enzyme by ATP. ADP, phosphoenolpyruvate and citrate inhibited phosphofructokinase activity but Pi did not affect it. Phosphofructokinase was not reactivated reversibly by mild change of pH and addition of effectors.  相似文献   

20.
Matrix-like particles were formed in sonicated suspensions of soluble chromogranins and phospholipids extracted from the isolated membrane phase of chromaffin granules. The artificial particles which sedimented into 0.4–0.6 M sucrose layers during isopycnic centrifugation, consisted of liposomal vesicles and granular aggregates indicative of lamellar and possibly hexagonal organization patterns of phospholipids and the aqueous phase containing the soluble chromogranins. The ultrastructure of the granular aggregates was strikingly similar to the matrix phase of the intact chromaffin granule.The dopamine-β-hydroxylase activity (EC 1.14.2.1) of the soluble chromogranin preparation was potentiated by the addition of the phospholipids and further enhanced by the sonication procedure. The enzymic activity was highest in the 0.4–0.6 M sucrose layers, rich in the artificial matrix-like particles.The artificially formed particles incorporated ATP by further sonication and the presence of ATP in the particle fractions did not inhibit the specific dopamine-β-hydroxylase activity, even at ratios of 4 and 2 μmoles ATP/mg protein in the 0.4 and 0.6 M sucrose layers, respectively. Noradrenaline was incorporated into the particle fractions in presence of ATP. However, the presence of noradrenaline above 3·10?6 M resulted in a 50–75% inhibition of the dopamine-β-hydroxylase activity of the artificial matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号