首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To better understand organelle genome evolution of the ulvophycean green alga Capsosiphon fulvescens, we sequenced and characterized its complete chloroplast genome. The circular chloroplast genome was 111,561 bp in length with 31.3% GC content that contained 108 genes including 77 protein‐coding genes, two copies of rRNA operons, and 27 tRNAs. In this analysis, we found the two types of isoform, called heteroplasmy, were likely caused by a flip‐flop organization. The flip‐flop mechanism may have caused structural variation and gene conversion in the chloroplast genome of C. fulvescens. In a phylogenetic analysis based on all available ulvophycean chloroplast genome data, including a new C. fulvescens genome, we found three major conflicting signals for C. fulvescens and its sister taxon Pseudoneochloris marina within 70 individual genes: (i) monophyly with Ulotrichales, (ii) monophyly with Ulvales, and (iii) monophyly with the clade of Ulotrichales and Ulvales. Although the 70‐gene concatenated phylogeny supported monophyly with Ulvales for both species, these complex phylogenetic signals of individual genes need further investigations using a data‐rich approach (i.e., organelle genome data) from broader taxon sampling.  相似文献   

2.
3.
The mouse opossums of the genus Thylamys constitute a group of species mainly adapted to open xeric‐like habitats and restricted to the southern portion of South America. We used molecular data (mitochondrial and nuclear sequences) to evaluate the phylogenetic and biogeographical relationships of all currently known living species of the genus, recognizing a new taxon from the middle and high elevations of the Peruvian Andes and evaluating the phylogenetic structuring within T. pallidior and T. elegans, as well as the validity of T. sponsorius, T. cinderella and T. tatei, and the haplogroups recognized within T. pusillus. Our results confirm the monophyly of the genus and that the Caatinga and the Cerrado inhabitants Thylamys karimii and T. velutinus are the most basal species in the radiation of Thylamys. We also calibrated a molecular clock which hypothesized a time of origin of the genus of about 24 My, with most species differentiating in middle and late Miocene and Plio‐Pleistocene times of South America.  相似文献   

4.
Within the nematode class Chromadorea, the suborder Tylenchina is an ecologically and morphologically diverse assemblage of nematodes that includes free‐living microbivores, fungivores and various types of plant parasites. A recent nematode classification system based largely on SSU rDNA phylogenetic trees classified suborder Tylenchina to include four infraorders: Panagrolaimomorpha, Cephalobomorpha, Tylenchomorpha and Drilonematomorpha, and phylogenetic relationships among species of these infraorders have not always been robustly supported. In this study, we determined the complete mitochondrial genome sequences of three Tylenchina species (Aphelenchus avenae [Aphelenchidae, Tylenchomorpha], Halicephalobus gingivalis, Panagrellus redivivus [Panagrolaimomorpha]) and the partial genome sequence of Acrobeles complexus (Cephalobomorpha) and used these sequences to infer phylogenetic relationships among representatives of the Tylenchina and other nematodes. Phylogenetic analysis of amino acid sequences for 12 protein‐coding genes of 100 nematode species supports monophyly of: Chromadorea, Spiruromorpha, Oxyuridomorpha, Ascarididae + Toxocaridae + Anisakidae, Meloidogynidae + Pratylenchidae + Heteroderidae and Aphelenchoidea. Bayesian and maximum‐likelihood analyses also show the nested position of Diplogasteromorpha within Rhabditomorpha, and Rhigonematomorpha within Ascaridomorpha. These analyses also show non‐monophyly of: clade III, Ancylostomatidae, Panagrolaimomorpha, Tylenchina and Tylenchomorpha. Reconstructed mitochondrial genome phylogeny also revealed that among two main Tylenchomorpha groups, the monophyletic group representing Aphelenchoidea species was sister to the large clade consisting of Ascaridomorpha, Diplogasteromorpha, Rhabditomorpha and Rhigonematomorpha and some Panagrolaimomorpha species, whereas Tylenchoidea species were sister to the most inclusive assemblage containing all infraordinal groups of Chromadorea, except for P. redivivus (Panagrolaimomorpha) and Acrobeles complexus (Cephalobomorpha). The monophyly of Aphelenchoidea (i.e. sister relationship between Aphelenchidae and Aphelenchoididae) recovered in this study indicates that similarity in certain aspects of pharyngeal structure between these two families appears best explained by common ancestry, rather than convergent evolution.  相似文献   

5.
The phylogenetic position of Cephalenchus is enigmatic with respect to other tylench nematodes. In this study, Cephalenchus populations representing 11 nominal species were sampled worldwide for molecular and morphological characterization. Species identification was based on light microscopy (LM) and scanning electron microscopy (SEM). Molecular analyses were based on the genes (i.e. 18S, 28S, 5.8S) and internal transcribed spacers (ITS‐1 and ITS‐2) of the ribosomal RNA (rRNA). Phylogenetic analyses (i.e. full and reduced alignments) of either concatenated or single genes always supported the monophyly of Cephalenchus. A sister relationship between Cephalenchus and Eutylenchus excretorius was recovered by most analyses, although branch support varies depending on the dataset used. The position of Cephalenchus + E. excretorius within Tylenchomorpha nevertheless remains ambiguous, thus highlighting the importance of sampling additional genes as well as taxa. Placement of Cephalenchus + E. excretorius as sister of Tylenchinae or Boleodorinae could not be rejected on the basis of 18S and 28S rRNA genes. Within Cephalenchus, amphidial opening morphology shows congruence with molecular‐based phylogenetic relationships, whereas the number of lines in the lateral field is likely to be a convergent trait. Morphometric analyses clearly distinguished short tail from medium–long tail species, and SEM observations seem to suggest a relation between tail length and amphidial opening. In addition, molecular phylogenies support the non‐monophyly of Cephalenchus cephalodiscus, Cephalenchus cylindricus, Cephalenchus daisuce and Cephalenchus leptus. The known extent of Cephalenchus diversity is increased with the inclusion of two new species, and the biogeography of the genus is discussed.  相似文献   

6.
The Neotropical hylid genus Sphaenorhynchus includes 15 species of small, greenish treefrogs widespread in the Amazon and Orinoco basins, and in the Atlantic Forest of Brazil. Although some studies have addressed the phylogenetic relationships of the genus with other hylids using a few exemplar species, its internal relationships remain poorly understood. In order to test its monophyly and the relationships among its species, we performed a total evidence phylogenetic analysis of sequences of three mitochondrial and three nuclear genes, and 193 phenotypic characters from all species of Sphaenorhynchus. Our results support the monophyly of Sphaenorhynchus with molecular and phenotypic evidence, with S. pauloalvini as the earliest diverging taxon, followed by S. carneus, as the sister taxon of all remaining species of the genus. We recognize three species groups in Sphaenorhynchus (the S. lacteus, S. planicola and S. platycephalus groups), to facilitate its taxonomic study; only three species (S. carneus, S. pauloalvini and S. prasinus) remain unassigned to any group. Sequence data were not available for only two species (S. bromelicola and S. palustris) for which we scored phenotypic data; wildcard behaviour was detected only in S. bromelicola nested inside the S. platycephalus group. On the basis of the resulting phylogenetic hypothesis, we discuss the evolution of oviposition site and a number of phenotypic characters that could be associated with heterochronic events in the evolutionary history of this group.  相似文献   

7.
The relationships of the hyline tribe Dendropsophini remain poorly studied, with most published analyses dealing with few of the species groups of Dendropsophus. In order to test the monophyly of Dendropsophini, its genera, and the species groups currently recognized in Dendropsophus, we performed a total evidence phylogenetic analysis. The molecular dataset included sequences of three mitochondrial and five nuclear genes from 210 terminals, including 12 outgroup species, the two species of Xenohyla, and 93 of the 108 recognized species of Dendropsophus. The phenomic dataset includes 46 terminals, one per species (34 Dendropsophus, one Xenohyla, and 11 outgroup species). Our results corroborate the monophyly of Dendropsophini and the reciprocal monophyly of Dendropsophus and Xenohyla. Some species groups of Dendropsophus are paraphyletic (the D. microcephalus, D. minimus, and D. parviceps groups, and the D. rubicundulus clade). On the basis of our results, we recognize nine species groups; for three of them (D. leucophyllatus, D. microcephalus, and D. parviceps groups) we recognize some nominal clades to highlight specific morphology or relationships and facilitate species taxonomy. We further discuss the evolution of oviposition site selection, where our results show multiple instances of independent evolution of terrestrial egg clutches during the evolutionary history of Dendropsophus.  相似文献   

8.
In the present study, three new strains of the rare volvocalean green alga Lobomonas were isolated from field‐collected samples, one from Sardinia (Italy) and two from Argentina, and comparatively studied. The Sardinian and one of the Argentinian strains were identified as Lobomonas francei, the type species of the genus, whereas the second Argentinian strain corresponded to L. panduriformis. Two additional nominal species of Lobomonas from culture collections (L. rostrata and L. sphaerica) were included in the analysis and shown to be morphologically and molecularly identical to the L. francei strains. The presence, number, and shapes of cell wall lobes, the diagnostic criterion of Lobomonas, were shown to be highly variable depending on the chemical composition of the culture medium used. The analyses by SEM gave evidence that the cell wall lobes in Lobomonas originate at the junctions of adjacent cell wall plates by extrusion of gelatinous material. The four L. francei strains had identical nrRNA gene sequences and differed by only one or two substitutions in the ITS1 + ITS2 sequences. In the phylogenetic analyses, L. francei and L. panduriformis were sister taxa; however, another nominal Lobomonas species (L. monstruosa) did not belong to this genus. Lobomonas, together with taxa designated as Vitreochlamys, Tetraspora, and Paulschulzia, formed a monophyletic group that in the combined analyses was sister to the “Chlamydomonas/Volvox‐clade.” Based on these results, Lobomonas was revised, the diagnosis of the type species emended, a lectotype and an epitype designated, and several taxa synonymized with the type species.  相似文献   

9.
The phylogeny of the family Tephritidae (Diptera: Tephritidae) was reconstructed from mitochondrial 12S, 16S, and COII gene fragments using 87 species, including 79 tephritid and 8 outgroup species. Minimum evolution and Bayesian trees suggested the following phylogenetic relationships: (1) A sister group relationship between Ortalotrypeta and Tachinisca, and their basal phylogenetic position within Tephritidae; (2) a sister group relationship between the tribe Acanthonevrini and Phytalmiini; (3) monophyly of Plioreocepta, Taomyia and an undescribed new genus, and their sister group relationship with the subfamily Tephritinae; (4) a possible sister group relationship of Cephalophysa and Adramini; and (5) reconfirmation of monophyly for Trypetini, Carpomyini, Tephritinae, and Dacinae. The combination of 12S, 16S, and COII data enabled resolution of phylogenetic relationships among the higher taxa of Tephritidae.  相似文献   

10.
Similar morphological characters and little molecular data of Amphioctopus rex, A. neglectus and A. cf. ovulum resulted in their unknown phylogenetic statuses and equivocal relationships. In this study, the complete mitochondrial genomes of these three species collected in Chinese waters were sequenced and compared with each other to clarify the relationships among them. The lengths of the mitochondrial genomes varied from 15,646 bp to 15,814 bp, and the A + T content and GC skew for protein‐coding genes showed little variation. In contrast, both a dendrogram based on codon usage and the gene arrangements of the three octopuses showed that A. rex was more closely related to A. neglectus than to A. cf. ovulum. Five data sets and two methods (maximum likelihood and Bayesian inference) were utilized for the first time to explore the phylogenetic relationships among these three species in Octopodidae. The results indicated that a data set combining protein‐coding genes and RNA genes (PR) was optimal for analysing the relationships among 43 cephalopods. All of the phylogenetic trees divided the cephalopods into 10 taxa and supported the monophyly of Oegopsida, Myopsida, Sepiidae and Octopodidae. In this study, Idiosepiidae was classified as sister to Sepiolidae. Trees constructed using all data sets robustly supported the monophyly of the genus Amphioctopus. Notably, A. rex was more closely related to A. neglectus than to A. cf. ovulum, although these three species share the characteristic of violet rings on dark ocelli.  相似文献   

11.
The Acanthocephala is a phylum of obligate endoparasitic animals comprising four classes (Archiacanthocephala, Palaeacanthocephala, Eoacanthocephala and Polyacanthocephala), although the phylogenetic interrelationships of these classes still remains unresolved. To investigate phylogenetic relationships of major acanthocephalan groups, we characterized the complete mitochondrial genome sequences of two palaeacanthocephalan species Centrorhynchus aluconis and Prosthorhynchus transversus (representing two different families of the order Polymorphida), and Polyacanthorhynchus caballeroi (the first mitogenomic representative of the class Polyacanthocephala) and used these new sequences for phylogenetic analyses, along with 32 platyzoan mtDNAs, including 10 additional acanthocephalans. Phylogenetic analyses using concatenated amino acid sequences for 12 protein‐coding genes with maximum likelihood and Bayesian inference methods supported monophyly of Acanthocephala. Within the phylum, Archiacanthocephala was positioned as the sister to the clade containing all three other acanthocephalan classes, with the polyacanthocephalan species P. caballeroi nested within Eoacanthocephala. This result contradicts morphology‐based classification systems that treated polyacanthorhynchids as one of the palaeacanthocephalan families, and instead suggests Polyacanthocephala is a member of Eoacanthocephala. Within the Palaeacanthocephala, Polymorphida monophyly was strongly supported and this is inconsistent with nuclear rDNA‐based molecular hypotheses that suggest non‐monophyly.  相似文献   

12.
The leaf or monkey frogs of the hylid subfamily Phyllomedusinae are a unique group of charismatic anurans. We present a molecular phylogenetic analysis that includes 45 of the 60 species of phyllomedusines using up to 12 genes and intervening tRNAs. The aims were to gain a better understanding of the phylogenetic position of Phrynomedusa, test the monophyly and explore the relationships among several putative lineages (Hylomantis, the H. buckleyi Group, Phasmahyla, the four species groups of Phyllomedusa, and the species of Phyllomedusa that remain unassigned to any group), and to examine the implications of our phylogeny for the evolution of several characters in phyllomedusines. The analyses resulted in a well‐supported phylogenetic hypothesis that provides a historical framework for a discussion of the evolution of characters associated with reproductive biology, gliding behaviour, the physiology of waterproofing, and bioactive peptides. Implications include an earlier origin for eggless capsules than for leaf‐folding behaviour during amplexus, two independent origins of gliding, and an earlier origin of reduction in evaporative water loss than uricotelism, which is a result that originally was predicted on the basis of physiology alone. Furthermore, our results support the prediction that bioactive peptides from different peptide families are to be expected in all species of Phyllomedusinae. Hylomantis (as recently redefined) is shown to be paraphyletic and the synonymy of Agalychnis is revised to remedy this problem by including both Hylomantis and Pachymedusa. © The Willi Hennig Society 2009.  相似文献   

13.
Bactrocera dorsalis sensu stricto, B. papayae, B. philippinensis and B. carambolae are serious pest fruit fly species of the B. dorsalis complex that predominantly occur in south‐east Asia and the Pacific. Identifying molecular diagnostics has proven problematic for these four taxa, a situation that cofounds biosecurity and quarantine efforts and which may be the result of at least some of these taxa representing the same biological species. We therefore conducted a phylogenetic study of these four species (and closely related outgroup taxa) based on the individuals collected from a wide geographic range; sequencing six loci (cox1, nad4‐3′, CAD, period, ITS1, ITS2) for approximately 20 individuals from each of 16 sample sites. Data were analysed within maximum likelihood and Bayesian phylogenetic frameworks for individual loci and concatenated data sets for which we applied multiple monophyly and species delimitation tests. Species monophyly was measured by clade support, posterior probability or bootstrap resampling for Bayesian and likelihood analyses respectively, Rosenberg's reciprocal monophyly measure, P(AB), Rodrigo's (P(RD)) and the genealogical sorting index, gsi. We specifically tested whether there was phylogenetic support for the four ‘ingroup’ pest species using a data set of multiple individuals sampled from a number of populations. Based on our combined data set, Bactrocera carambolae emerges as a distinct monophyletic clade, whereas B. dorsalis s.s., B. papayae and B. philippinensis are unresolved. These data add to the growing body of evidence that B. dorsalis s.s., B. papayae and B. philippinensis are the same biological species, which poses consequences for quarantine, trade and pest management.  相似文献   

14.
Phylogenetic relationships among 36 Recent and 42 extinct species of the Caninae (Canidae) were analysed, based on 360 morphological, developmental, ecological, behavioural and cytogenetic characters and 24 mitochondrial and nuclear markers. Primary phylogenetic analyses were accompanied by experimental analyses based on various combinations of data partitions and taxon samples. Leptocyon was recovered as a paraphyletic stem lineage of the Caninae; monophyly/paraphyly of the fox‐like canids (Vulpini) remains uncertain; Urocyon and Metalopex form a clade, possibly sister to all non‐Leptocyon canids; Otocyon, Nyctereutes and Nurocyon form a clade; dog‐like canids (Canini) are monophyletic (with South American Cerdocyonina and Afro‐Holarctic Canina); all South American hypercarnivores (Canis gezi, Protocyon, Speothos, Theriodictis) form a clade, close to Chrysocyon and Dusicyon; Canis arnensis, C. ferox, C. thooides, C. lepophagus and Eucyon spp. are basal to the Canina; Lycaon is an isolated African hypercarnivore; Cuon and its relatives (Xenocyon, possibly also Canis antonii, C. falconeri and Cynotherium) form a clade close to Canis s. str.; C. edwardii–C. etruscus–C. mosbachensis–C. palmidens–C. variabilis and hypercarnivorous Canis armbrusteri–C. dirus clades belong to Canis s. str. As the highly homoplastic morphological characters connected to dietary biology are the prominent characters available for the key fossil species, we conclude that macroevolutionary and palaeoecological analyses of the extinct and extant Caninae were to some extent compromised by the phylogenies used.  相似文献   

15.
The frog clade composed of the alsodid genera Alsodes + Eupsophus is the most species‐rich of the Patagonian endemic frog clades, including nearly 31 of the slightly more than 50 species of that region. The biology of this group of frogs is poorly known, its taxonomy quite complex (particularly Alsodes), and its diversity in chromosome number striking when compared with other frogs (collectively, there are species having 2n = 22, 2n = 26, 2n = 28, 2n = 30 or 2n = 34). We present a phylogenetic analysis of this Patagonian frog clade based on mitochondrial and nuclear gene sequences. We sequenced five mitochondrial genes (cytochrome b, cytochrome oxidase I, 12S, 16S, NADH dehydrogenase subunit 1) with three intervening tRNAs, and fragments of three nuclear genes (seven in absentia homolog 1, rhodopsin exon 1, RAG‐1), for a maximum of 6510 bp for multiple specimens from 26 of the 31 species. We recovered Eupsophus as polyphyletic, with E. antartandicus, E. sylvaticus, and E. taeniatus in Batrachylidae, in accordance with most previous hypotheses. Based on this result, we transfer E. antartandicus and E. taeniatus back to Batrachyla, and E. sylvaticus to Hylorina (resurrected from the synonymy of Eupsophus), remediating the paraphyly of Eupsophus. Our results strongly corroborate the monophyly of Alsodes + Eupsophus (sensu stricto), the individual monophyly of these genera, and the monophyly of the species groups of Eupsophus. They also show the non‐monophyly of all non‐monotypic species groups of Alsodes proposed in the past. Our results expose several taxonomic problems particularly in Alsodes, and to a lesser extent in Eupsophus. This phylogenetic context suggests a rich evolutionary history of karyotypic diversification in the clade, in part corroborating previous hypotheses. In Alsodes, we predict three independent transformations of chromosome number from the plesiomorphic 2n = 26. All these, strikingly, involve increments or reductions of pairs of haploid chromosomes. Finally, the phylogenetic pattern recovered for Alsodes and Eupsophus suggests a trans‐Andean origin and diversification of the group, with multiple, independent ingressions over cis‐Andean regions.  相似文献   

16.
The bee tribe Eucerini is a large monophyletic taxon occurring in all continents, except Oceania and Antarctica, but far more diverse in the Americas and, especially, in the Neotropics. The phylogenetic relationships within its subtribe Eucerina, which contains the bulk of Eucerini diversity, is poorly understood, this being especially true for the relationships among its Neotropical representatives, which have been poorly represented in all phylogenetic studies, including Eucerini, to date. This leads to a generalized lack of confidence on the monophyly of the groups currently accepted as genera and subgenera. Here, a phylogenetic study based on three molecular markers (COI, 18S, and 28S, totalling about 1700 bp) and 58 morphological characters is presented as a contribution to the understanding of the relationships of the so‐called Thygater‐Trichocerapis group, and especially of the genus Thygater Holmberg, which has not previously been extensively sampled. Representatives of Trichocerapis, including its monotypic subgenus T. (Dithygater), are included for the first time in a phylogenetic study. The main results were: (i) support for the monophyly of the Thygater‐Trichocerapis group; (ii) support for the monophyly of Thygater; (iii) recognition of two main clades in Thygater, each one containing the type species of one of the previously recognized subgenera; and (iv) additional support for the position of Alloscirtetica as sister to all remaining Eucerina. Based on these results a redefinition of the scope of the two subgenera of Thygater is proposed, with changes in the subordination of three of its species, T. (Nectarodiaeta) chaetaspis comb.n. , T. (Nectarodiaeta) paranaensis comb.n. and T. (Thygater) mexicana comb.n.  相似文献   

17.
We provide a taxonomic review of the extinct testudinid Testudo catalaunica, based on published and unpublished material from several Miocene (late Aragonian and early Vallesian) sites of the Vallès‐Penedès Basin (north‐east Iberian Peninsula). We show that Testudo catalaunica irregularis is a junior subjective synonym of T. catalaunica, and further provide an emended diagnosis of the latter based on newly reported material. Contrary to some recent suggestions, this emended diagnosis discounts an alternative attribution of T. catalaunica to Paleotestudo. The latter is merely recognized as a subgenus of Testudo, based on a cladistic analysis that assessed the phylogenetic position of all extant and most extinct species of Testudo currently recognized as valid (including T. catalaunica). Our phylogenetic analysis (which recovers the molecular phylogeny of extant Testudo s.l.) supports a taxonomic scheme in which the three extant subgenera of Testudo are represented in the fossil record. Testudo s.s. is retrieved as the sister taxon of Testudo (Agrionemys) + [Testudo (Paleotestudo) + Testudo (Chersine)]. The extinct Testudo (Paleotestudo) is therefore the sister taxon of the Testudo (Chersine) clade. The latter subgenus reveals as the most diverse clade of Testudo s.l. in the fossil record, with T. catalaunica Testudo steinheimensis constituting a subclade distinct from that including Testudo hermanni.  相似文献   

18.
The carditid genus Cyclocardia is currently the most diverse genus of the family, including nearly 180 nominal species encompassing wide stratigraphical (Cretaceous–Recent) and geographical (Antarctica, South and North America, Europe, Africa, Alaska, Russia, Japan and New Zealand) ranges. Due to the lack of autapomorphies in the diagnosis of the genus and its large account of species, we re-evaluate the systematic and phylogenetic status of Cyclocardia. We applied three approaches: bibliographic revision, phylogenetic analysis and an exploration of morphological disparity. We used a shell–character matrix comprising 65 taxa (2 outgroups, 29 non-Cyclocardia carditids and 28 species of Cyclocardia) for phylogenetic and disparity analyses. Maximum Observable Rescaled Distances was used to construct a distance matrix to compare Cyclocardia species and other carditid groups. According to our results, Cyclocardia represents a non-monophyletic taxon and is thus a ‘wastebasket taxon’, chiefly because its diagnosis was based mainly on plesiomorphic characters. The European species C. kickxi and C. chameformis are placed within Scalaricardita, and the previously proposed genus Crassicardia is monophyletic (including C. crassidens, C. crebricostata, C. isaotakii and C. rjabininae). Three new genera are proposed for new groups identified by the phylogenetic analysis: South American Oesterheldia gen. nov. (including O. cannada and O. dalek), western North American Coanicardita gen. nov. (including C. ventricosa and C. occidentalis), and North Pacific Hippocampocardia gen. nov. (including H. barbarensis, H. hamiltonensis and H. yakatagensis). The newly defined monophyletic Cyclocardia is restricted to the Atlantic Ocean species C. borealis, C. novangliae and C. compressa.  相似文献   

19.
Species diversity within the genus Osmundea in the Macaronesian region was explored by conducting a comprehensive sampling in the Azores, the Canary, and the Madeira archipelagos. Toward identification, all specimens were first observed alive to verify the absence of corps en cerise, a diagnostic character for the genus and morphometric data were measured (thallus length and width, first‐order branches length and width, branchlets length and width, cortical cell length and width in surface view, cortical cell length and width in transverse section). Specimens were sequenced for COI‐5P (39 specimens) and three species delimitation methods (Generalized Mixed Yule Coalescent, Automatic Barcode Gap Discovery method, and Poisson Tree Processes) were used to assess the threshold between infra‐ and interspecific relationships. Subsequently, one or several sequences of plastid‐encoded large subunit of RuBisCO (21 specimens) per delimited species were generated to assess the phylogenetic relationships among Macaronesian Osmundea. Moreover, for each delineated species, vegetative and reproductive anatomy was thoroughly documented and, when possible, specimens were either assigned to existing taxa or described as novel species. This integrative approach has provided data for (i) the presence of O. oederi, O. pinnatifida, and O. truncata in Macaronesia; (ii) the proposal of two novel species, O. prudhommevanreinei sp. nov. and O. silvae sp. nov.; and (iii) evidence of an additional species referred as “Osmundea sp.1,” which is a sister taxon of O. hybrida.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号