首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorescence study of the complexation between uranyl salophen (L) and some common anions in acetonitrile–water (90:10, v/v) solution showed a tendency of L toward acetate ion (AcO?). The fluorescence enhancement of L is attributed to a 1:1 complex formation between L and acetate ion which was utilized as the basis for the selective detection of AcO?. The association constant of the 1:1 complex formation of L–AcO? was calculated as 6.60 × 106. The linear response range of the fluorescent chemosensor covers a AcO? concentration range of 1.6 × 10?7 to 2.5 × 10?5 mol/L, with a detection limit of 2.5 × 10?8 mol/L. L showed a selective and sensitive fluorescence enhancement response toward acetate ion over I3?, NO3?, CN?, CO32?, Br?, Cl?, F?, H2PO4? and SO42?, which was attributed to the higher stability of inorganic complex between acetate and L. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Based on chelation‐enhanced fluorescence, a new fluorescent coumarin derivative probe 3(1‐(7‐hydroxy‐4‐methylcoumarin)ethylidene)hydrazinecarbodithioate for Hg2+, Ag+ and Ag nanoparticles is reported. Fluorescent probe acts as a rapid and highly selective “off–on” fluorescent probe and fluorescence enhancement by factors 5 to12 times was observed upon selective complexation with Hg2+, Ag+ and Ag nanoparticles. The molar ratio plots indicated the formation of 1:1 complexes between Hg2+ and Ag+ with the probe. The linear response range covers a concentration range 0.1 × 10–5–1.9 × 10–5 mol/L, 0.1 × 10–5–2.3 × 10–5 mol/L and 0.146 × 10–12–2.63 × 10–12 mol/L for Hg2+, Ag+ and Ag nanoparticles, respectively. The interference effect of some anions and cations was also tested. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
The water‐soluble luminescent CdSe quantum dots were prepared by ligand exchange with triethanolamine (TEA). Oxygen can reversibly enhance the fluorescence of the synthesized quantum dots (TEA‐CdSe‐QDs) in aqueous solution. Nitric oxide radical (NO) can react easily with dissolved oxygen in water and was found to have a significant quenching effect on the fluorescence of the TEA‐CdSe‐QDs. The fluorescence responses were concentration‐dependent and can be well described by the typical Stern–Volmer equation. A good linear relationship (R= 0.9963) was observed over the range 5.92 × 10?7 to 1.85 × 10?5 mol/L nitric oxide. Above this concentration was a second linear region ranging from 2.12 × 10?5 to 1.12 × 10?4 mol/L NO with a gentler slope. The detection limit, calculated following the 3σ IUPAC criteria, was 3.02 × 10?7 mol/L. The interference effect of some common interferents such as nitrite (NO2?), nitrate (NO3?), glucose and l ‐ascorbic acid on the detection of NO was negligible for the proposed system, demonstrating the potential utility of this probe for the detection of NO in biological systems. The possible mechanism was also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, a novel fluorescent sensor 1 for selective and sensitive detection of cysteine was developed based on a complex between bi‐8‐carboxamidoquinoline derivative ligand ( L ) and Cu2+. The interaction of Cu2+ with the ligand causes a dramatic fluorescence quenching most likely due to its high affinity towards Cu2+ and a ligand–metal charge transfer (LMCT) process. The in situ generated L–Cu 2 complex was utilized as a chemosensing ensemble for cysteine. In the presence of cysteine, the fluorophore, L , was released from L–Cu 2 complex because of the strong affinity of cysteine to Cu2+ via the Cu–S bond, leading to the fluorescence recovery of the ligand. The proposed displacement mechanism was confirmed by the results of mass spectrometry (MS) study. Under optimized conditions, the recovered fluorescence intensity is linear with cysteine concentrations in the range 1 × 10?6 mol/l to 8 × 10?6 mol/l. The detection limit for cysteine is 1.92 × 10?7 mol/l. Furthermore, the established method showed a highly sensitive and selective response to cysteine among the 20 fundamental α‐amino acids used as the building blocks of proteins, after Ni2+ was used as a masking agent to eliminate the interference of His. The proposed sensor is applicable in monitoring cysteine in practical samples with good recovery rate.  相似文献   

5.
A novel molecular imprinting electrochemiluminescence sensor for detecting chiral cinchonine molecules was developed with a molecularly imprinted polymer membrane on the surfaces of magnetic microspheres. Fe3O4@Au nanoparticles modified with 6‐mercapto‐beta‐cyclodextrin were used as a carrier, cinchonine as a template molecule, methacrylic acid as a functional monomer and N ,N ′‐methylenebisacrylamide as a cross‐linking agent. Cinchonine was specifically recognized by the 6‐mercapto‐beta‐cyclodextrin functional molecularly imprinted polymer and detected based on enhancement of the electrochemiluminescence intensity caused by the reaction of tertiary amino structures of cinchonine molecules with Ru(bpy)32+. Cinchonine concentrations of 1 × 10?10 to 4 × 10?7 mol/L showed a good linear relationship with changes of the electrochemiluminescence intensity, and the detection limit of the sensor was 3.13 × 10?11 mol/L. The sensor has high sensitivity and selectivity, and is easy to renew. It was designed for detecting serum samples, with recovery rates of 98.2% to 107.6%.  相似文献   

6.
Four complexes [Pd(L)(bipy)Cl]·4H2O (1), [Pd(L)(phen)Cl]·4H2O (2), [Pt(L)(bipy)Cl]·4H2O (3), and [Pt(L)(phen)Cl]·4H2O (4), where L = quinolinic acid, bipy = 2,2’-bipyridyl, and phen = 1,10-phenanthroline, have been synthesized and characterized using IR, 1H NMR, elemental analysis, and single-crystal X-ray diffractometry. The binding of the complexes to FS-DNA was investigated by electronic absorption titration and fluorescence spectroscopy. The results indicate that the complexes bind to FS-DNA in an intercalative mode and the intrinsic binding constants K of the title complexes with FS-DNA are about 3.5?×?104 M?1, 3.9?×?104 M?1, 6.1?×?104 M?1, and 1.4?×?105 M?1, respectively. Also, the four complexes bind to DNA with different binding affinities, in descending order: complex 4, complex 3, complex 2, complex 1. Gel electrophoresis assay demonstrated the ability of the Pt(II) complexes to cleave pBR322 plasmid DNA.  相似文献   

7.
《Luminescence》2003,18(6):318-323
It was found that the inhibition and enhancement by phloroglucinol of the chemiluminescence from the luminol–K3Fe(CN)6 system were dependent on the pH of luminol solution and the concentration of phloroglucinol. In Na2CO3–NaHCO3 buffer, phloroglucinol exhibited strong chemiluminescent enhancement at pH 9.4. On this basis, a flow injection method was developed for the determination of phloroglucinol. The method was simple, rapid, convenient and sensitive, with a detection limit of 2.0 × 10?9 mol/L. It is effective for determining phloroglucinol in the range of 1.0 × 10?5–5.0 × 10?9 mol/L. The relative standard deviation is 1.3% within one day and 3.2% between days for the determination of 5.0 × 10?7 mol/L phloroglucinol. The method has been successfully used to determine phloroglucinol in environmental water, with satisfactory results. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
A sensitive fluorescence (FL) technique is proposed for the determination of levofloxacin (LVX). The method is based on the fact that the weak FL signal of the Tb(III)–LVX system is strongly enhanced in the presence of gold nanoparticles. Gold nanoparticles were prepared by the citrate reduction of HAuCl4 and characterized by transmission electron microscopy (TEM). Levofloxacin and Tb(III) ion form a fluorescence complex in aqueous solution, and its maximum emission wavelength was found at 545 nm. Optimal conditions for the formation of the levofloxacin–Tb(III) complexes were studied. Levofloxacin was detected by measuring the FL intensity, which increases linearly with the concentration of LVX in the range 6.2 × 10−10–2.6 × 10−8 mol/L. Recovery of the target analytes was > 96% with good quality parameters: linearity (r2 > 0.996), limit of detection (LOD) and limit of quantification (LOQ) values 2.1 × 10−10 mol/L and 7.2 × 10−10 mol/L, and run‐to‐run and day‐to‐day precisions with relative standard deviations (RSDs) around 3%. Thus, the proposed method can be successfully applied to the routine determination of levofloxacin in pharmaceutical preparations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The behaviors of 15 kinds of metal ions in the thiol‐capped CdTe quantum dots (QDs)–H2O2 chemiluminescence (CL) reaction were investigated in detail. The results showed that Ag+, Cu2+ and Hg2+ could inhibit CdTe QDs and H2O2 CL reaction. A novel CL method for the selective determination of Ag+, Cu2+ and Hg2+ was developed, based on their inhibition of the reaction of CdTe QDs and H2O2. Under the optimal conditions, good linear relationships were realized between the CL intensity and the logarithm of concentrations of Ag+, Cu2+ and Hg2+. The linear ranges were from 2.0 × 10?6 to 5.0 × 10?8 mol L?1 for Ag+, from 5.0 × 10?6 to 7.0 × 10?8 mol L?1 for Cu2+ and from 2.0 × 10?5 to 1.0 × 10?7 mol L?1 for Hg2+, respectively. The limits of detection (S/N = 3) were 3.0 × 10?8, 4.0 × 10?8 and 6.7 × 10?8 mol L?1 for Ag+, Cu2+ and Hg2+, respectively. A possible mechanism for the inhibition of CdTe QDs and H2O2 CL reaction was also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The main purpose of this study was to develop an inexpensive, simple, rapid and sensitive chemiluminescence (CL) method for the determination of glutamine (Gln) using a flow‐injection (FI) system. Gln was found to strongly inhibit the CL signal of the luminol–H2O2–CuSO4 system in Na2B4O7 solution. A new FI‐CL method was developed for the determination of Gln. Parameters affecting the reproducibility and CL detection were optimized systematically. Under the optimized conditions, the corresponding linear regression equation was established over the range of 5.0 × 10?7 to 2.5 × 10?6 mol/L with the detection limit of 1.8 × 10?8 mol/L. The relative standard deviation was found to be 1.8% for 11 replicate determinations of 1.5 × 10?6 mol/L Gln. The proposed method has been satisfactorily applied for the determination of Gln in real samples (Marzulene‐s granules) with recoveries in the range of 98.7–108.6%. The minimum sampling rate was about 100 samples/h. The possible mechanism of this inhibitory CL was studied by fluorescence spectrophotometer and UV–vis spectrophotometer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
A highly sensitive fluorescence method for glycoprotein detection has been established based on fluorescence resonance energy transfer (FRET) between CuInS2 quantum dots (QDs) and rhodamine B (RB). Lectins comprise a group of proteins with unique affinities toward carbohydrate structures, so the process of FRET can occur between lectin‐coated QDs (CuInS2 QDs–Con A conjugates, acceptors) and carbohydrate‐coated RB (RB–NH2‐glu conjugates, donors). The fluorescence of lectin‐coated QDs was recovered in the presence of a glycoprotein such as glucose oxidase (GOx) and transferrin (TRF), which significantly reduced the FRET efficiency between the donor and the acceptor. Under optimal conditions, a linear correlation was established between the fluorescence intensity ratio I654/I577 and the TRF concentration over the range of 6.90 × 10‐10 to 3.45 × 10‐8 mol/L, with a detection limit of 2.5 × 10‐10 mol/L. The linear range for GOx is 3.35 × 10‐10 to 6.70 × 10‐8 mol/L, with a detection limit of 1.5 × 10‐10 mol/L. The proposed method was applied to the determination of glycoprotein in human serum and cell‐extract samples with satisfactory results. Furthermore, CuInS2 QDs–Con A conjugates are used as safe and efficient optical nanoprobes in HepG2 cell imaging. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
A highly selective and simple chemiluminescence (CL) method for determination of penicillin G potassium (PGK) was developed. In the proposed method, CL was elicited from PGK upon its oxidation with H2O2. The light emission was enhanced in the presence of N‐cetyl‐N,N,N‐trimethylammonium bromide (CTMAB). An experimental design, central composite design (CCD), was used to realize the optimized variables, including pH, surfactant (CTMAB) and H2O2 concentrations. Under optimum condition, the calibration graph was linear in the range 3.3 × 10?3–3.3 × 10?1 mmol/L, with a detection limit of 8.8 × 10?4 mmol/L for PGK. The precision was calculated by analysing samples containing 1.6 × 10?1 mmol/L PGK (n = 5) and the relative standard deviation (RSD) was 1.40%. The utility of this method was demonstrated by determining PGK in pharmaceutical formulations for injection. The proposed method was validated by a reference method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
A europium‐sensitized fluorescence spectrophotometry method using an anionic surfactant, sodium dodecyl benzene sulphonate (SDBS), was developed for the determination of gatifloxacin (GFLX). The GFLX–Eu3+–SDBS system was studied and it was found that SDBS significantly enhanced the fluorescence intensity of the GFLX–Eu3+ complex (about 25‐fold). The optimal experimental conditions were determined as follows: excitation and emission wavelengths of 338 and 617 nm, pH 7.5, 3.0 × 10–6 mol/L europium(III), and 5.0 × 10–5 mol/L SDBS. The enhanced fluorescence intensity of the system (ΔIf) showed a good linear relationship with the concentration of GFLX over the range 1.0 × 10–8–8.0 × 10–7 mol/L with a correlation coefficient of 0.9990. The detection limit (S:N = 3) was determined as 1.0 × 10–9 mol/L. This method has been successfully applied for the determination of GFLX in pharmaceuticals and human urine/serum samples. Compared with most other methods reported, the rapid and simple procedure proposed here offered higher sensitivity, wider linear range and good stability. The luminescence mechanism of the system is also discussed in detail. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
A simple and sensitive flow injection chemiluminescence (FI‐CL) method was developed for the determination of naphazoline hydrochloride (NPZ). The method is based on the enhancing effect of NPZ on the weak CL signal from the reaction of KIO4 with H2O2. Experimental parameters that affected the CL signal, including the pH of the KIO4 solution, concentrations of KIO4, H2O2 and disodium‐EDTA and flow rate were optimized. Under the optimum conditions, the increment of CL intensity was linearly proportional to the concentration of NPZ in the range 5.0 × 10?6 to 70 × 10?6 mol/L. The detection limit was 1.0 × 10?6 mol/L and the relative standard deviation for 50 × 10?6 mol/L NPZ solution was 2.8% (n = 11). In addition, a high throughput of 120 samples/h was achieved. The utility of this method was demonstrated by determining NPZ in pharmaceuticals. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Pyrophosphate (PPi) is involved in lots of anabolism and bioenergetic processes in organisms and possesses important biological functions so that its detection is very significant. Here, we developed a selective fluorometric detection method for PPi with a copper(II) complex of 2,6-bis(2-benzimidazolyl)pyridine (bbimp), and then applied it to the detection of bacterial alarmone ppGpp. bbimp has the fluorescence emission at 395 nm, but the bbimp–Cu2+ complex is hardly fluorescent because the intrinsic fluorescence of bbimp is effectively quenched by Cu2+. With the addition of PPi, however, the fluorescence emission of bbimp turns on with a 2 nm red-shift, and has a linear relationship with PPi in the range of 3–90 μmol/L. This method has good selectivity for PPi over other anions especially those phosphate-containing anions such as ATP, UTP, CTP, GTP, GDP, and PO43−.  相似文献   

16.
Two novel sensitive sequential injection chemiluminescence analysis and fluorescence methods for trovafloxacin mesylate detection have been developed. The methods were based on the enhancement effect of gold nanoparticles on luminol–ferricyanide–trovafloxacin and europium(III)–trovafloxacin complex systems. The optimum conditions for both detection methods were investigated. The chemiluminescence signal was emitted due to the enhanced effect of gold nanoparticles on the reaction of luminol–ferricyanide–trovafloxacin in an alkaline medium. The response was linear over a concentration range of 1.0 × 10–9 to 1.0 × 10–2 mol/L (%RSD = 1.3), (n = 9, r = 0.9991) with a detection limit of 1.7 × 10–10 mol/L (S/N = 3). The weak fluorescence intensity signal of the oxidation complex of europium(III)–trovafloxacin was strongly enhanced by gold nanoparticles and detected at λex = 330 and λem = 540 nm. Fluorescence detection enabled the determination of trovafloxacin mesylate over a linear range of 1.0 × 10–8 to 1.0 × 10–3 mol/L (%RSD = 1.2), (n = 6, r = 0.9993) with a detection limit of 3.3 × 10–9 mol/L. The proposed methods were successfully applied to the determination of the studied drug in its bulk form and in pharmaceutical preparations. The results were treated statistically and compared with those obtained from other reported methods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Bone is one of the main target organs for the lanthanides (Ln). Biodistribution studies of Tm-based compounds in vivo showed that bone had significant uptake. But the effect of Tm3+ on primary mouse bone marrow stromal cells (BMSCs) has not been reported. So we investigated the effect and underlying mechanisms of Tm3+ on BMSCs. Cell viability, cell apoptosis, reactive oxygen species (ROS) level, lactate dehydrogenase (LDH) activity and mitochondrial membrane potential (MMP) were studied. The results indicated that Tm3+ increased the viability of BMSCs at concentrations of 1?×?10?7, 1?×?10?6, 1?×?10?5, and 1?×?10?4 mol/L in a dose-dependent manner, turned to decrease the viability of BMSCs at the highest concentration of 1?×?10?3 mol/L for 24, 48, and 72 h. Tm3+ at 1?×?10?3 mol/L promoted apoptosis of BMSCs, increased the ROS and LDH levels, and decreased MMP in BMSCs. Taken together, we demonstrated that Tm3+ at 1?×?10?3 mol/L might induce cellular apoptosis through mitochondrial pathway. These results may be helpful for more rational application of Tm-based compounds in the future.  相似文献   

18.
Uniform molecular imprinting microspheres were prepared using precipitation polymerization with thifensulfuron‐methyl (TFM) as template, acrylamide as functional monomer and ethylene glycol dimethacrylate as cross‐linker. TFM could be selectively adsorbed on the molecularly imprinted polymers (MIPs) matrix through the hydrogen bonding interaction and the adsorbed TFM could be sensed by its strikingly enhancing effect on the weak chemiluminescence (CL) reaction between luminol and hydrogen peroxide. On this basis, a novel CL sensor for the determination of TFM using MIPs as recognition elements was established. The logarithm of net CL intensity (ΔI) is linearly proportional to the logarithm of TFM concentration (C) in the range from 1.0 × 10?9 to 5.0 × 10?5 mol L?1 with a detection limit of 8.3 × 10?10 mol L?1 (3σ). The results demonstrated that the MIP–CL sensor was reversible and reusable and that it could strikingly improve the selectivity and sensitivity of CL analysis. Furthermore, it is suggested that the CL enhancement of luminol–H2O2 by TFM might be ascribed to the enhancement effect of CO2, which came from TFM hydrolysis in basic medium. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
A rapid, simple, inexpensive and highly sensitive spectrofluorimetric method was developed for the determination of trace amounts of some tetracyclines (TCs), namely tetracycline hydrochloride (TCH), oxytetracycline hydrochloride (OTCH) and minocycline hydrochloride (MCH). Binding rhodamine B (RhB) to gold nanoparticles (Au NPs) resulted in quenching of the fluorescence of RhB by a resonance energy transfer (FRET) mechanism, with Au NPs as the energy acceptors. The presence of TCs caused the release of RhB molecules and recovered their fluorescence, and this was used as a basis for the quantitative determination of TCs. The reaction was monitored spectrofluorimetrically by measuring the increase in fluorescence of RhB at 572 nm starting 5 min after mixing the reagents in Tris buffer solution (pH 6.5). The effect of various experimental factors such as buffer type, pH, concentrations of the involved reagents and reaction time were studied to optimize the reaction conditions. Under optimum conditions, the calibration graphs were linear within the ranges 2.08 × 10?9–1.04 × 10?6 mol/L, 2.01 × 10?9–1.00 × 10?6 mol/L and 2.02 × 10?9–1.01 × 10?6 mol/L and detection limits (LODs) of 0.61 × 10?9, 0.32 × 10?9 and 0.66 × 10?9 mol/L were calculated for TCH, OTCH and MCH, respectively, with corresponding percent relative standard deviations (%RSDs) of 1.18, 1.21 and 1.54 (n = 5). The method was successfully applied to the determination of TCs in drinking water, human urine, bovine milk and breast milk samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
An electrochemiluminescence (ECL) approach for methamphetamine determination was developed based on a glassy carbon electrode modified with a Ru(bpy)32+‐doped silica nanoparticles/Nafion composite film. The monodispersed nanoparticles, which were about 50 nm in size, were synthesized using the water‐in‐oil microemulsion method. The ECL results revealed that Ru(bpy)32+ doped in silica nanoparticles retained its original photo‐ and electrochemical properties. The ECL intensity was found to be proportional to methamphetamine concentration over the range from 1.0 × 10?7 to 1.0 × 10?5 mol L?1, and the detection limit was found to be 2.6 × 10?8 mol L?1. The proposed ECL approach was used to analyze the methamphetamine content in drugs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号