首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding activity of [3H]dexamethasone to the specific receptor was studied in the cytoplasmic fraction of a established fibroblast line derived from rat carrageenin granuloma in culture condition. Specific receptor to dexamethasone was demonstrated. Scatchard analysis revealed a single class of binding sites with a dissociation constant for [3H]dexamethasone of 3.64 - 10(-8) M and a concentration of binding sites of 0.825 pmol per mg cytosol protein. The number of cytoplasmic binding sites per cell was calculated at 1.15 - 10(5). Total binding activity to [3H]dexamethasone of the cytoplasmic fraction was enhanced when the cells were cultured in a medium containing salicylic acid was at 37 degrees C. The maximum enhancement was seen at the concentration of 10(-3)M and in 3h treatment of salicylic acid. This enhancement by salicylic acid was lost when cycloheximide was added to the culture medium at the same time. If salicyclic acid was added to the cell free system, it showed no effect on the binding activity. The other non-steroidal anti-inflammatory drugs; phenylbutazone and indomethacin,also enhanced the total binding activity to [3H]dexamethasone of the cytoplasmic fraction at the concentration of 2 - 10(-5) M and 2 - 10(-7) M, respectively.  相似文献   

2.
[3H]norepinephrine was shown to bind to specific sites on isolated fat cells. A Scatchard plot of norepinephrine binding showed two apparent Ka of 1.9 · 106 and 1.2 · 105 LM?. 1.4 · 10?4 M Norepinephrine covalently-linked to agarose beads reduced [3H]norepinephrine binding by over 50%. Several structurally related drugs were compared as inhibitors of [3H]norepinephrine binding and as stimulators of lipolysis in preparations of similarly prepared cells. Dose-response curves for norepinephrine, epinephrine and isoproterenol showed the affinities for binding inhibition and for stimulation of lipolysis to be in the same range of 6 · 10?7-2 · 10?6 M. Dopamine and dopa were potent inhibitors of [3H]norepinephrine binding at 8.5 · 10?7 M and 2.0 · 10?6 M respectively, but did not stimulate lipolysis even at 10?4 M. Propranolol, a β-adrenergic antagonist, had no effect on [3H]norepinephrine binding at 10?4 M but completely inhibited catecholamine-stimulated lipolysis at 10?5 M. Phentolamine, an α-adrenergic antagonist, did not inhibit binding or catecholamine-stimulated lipolysis at 10?4 M. Ephedrine, metaraminol, phenylephrine and normetanephrine were also ineffective both as [3H]norepinephrine binding inhibitors and as stimulators of lipolysis. The results suggested the catechol ring of catecholamines is more important than the ethanolamine side chain as a requirement for binding, while both an intact catechol moiety and ethanolamine function appear necessary for physiological effect.  相似文献   

3.
α-[3H]Bungarotoxin was prepared by catalytic reduction of iodinated α-bungarotoxin with tritium gas. Crude mitochondrial fraction from rat cerebral cortex bound 40 · 10?15 ?60 · 10?15 moles of α-[3H]bungarotoxin per mg of protein. This binding was reduced by 50% in the presence of approx. 10?6 M d-tubocurarine or nicotine, 10?5 M acetylcholine, 10?4 M carbamylcholine or decamethonium or 10?3 M atropine. Hexamethonium and eserine were the least effective of the drugs tested. Crude mitochondrial fraction was separated into myelin, nerve endings, and mitochondria. The highest binding of toxin per mg of protein was found in nerve endings, as well as the greatest nhibition of toxin binding of d-tubocurarine. Binding of α-[3H]bungarotoxin to membranes obtained by osmotic shock of the crude mitochondrial fraction indicates that the receptor for the toxin is membrane bound. 125I-Labeled α-bungarotoxin, prepared with Na 125I and chloramine T, was highly specific for the acetylcholine receptor in diaphragm, however, it was less specific and less reliable than α-[3H]bungarotoxin in brain. We conclude that a nicotinic cholinergic receptor exists in brain, and that α-[3H]bungarotoxin is a suitable probe for this receptor.  相似文献   

4.
5.
The kinetic properties and subcellular distribution of an esterifying enzyme in the pigment epithelium of bovine retina have been studied using both [1-3H]retinol and [3H]retinol bound to cellular retinol-binding protein as substrates. The most active esterifying fraction in pigment epithelial cell preparations was the microsomes, but the lysosome plus mitochondria fraction also showed some activity, probably due to endoplasmic reticulum present as an impurity. The microsomal enzyme showed optimum activity at pH 7.5, and the reaction was linear up to 30 μg protein and for the first 10–15 min. The apparent Km values were 16.6 · 10?6 and 5.5 · 10?6 M for [3H]retinol and bound [3H]retinol, respectively. This is the first time that retinol bound to cellular retinol-binding protein has been shown to undergo metabolic stransformation. The microsomal esterifying activity was destroyed by boiling for 1 min, or after freezing for 2 months. No clear requirement for ATP, CoA or fatty acid could be demonstrated.Of all the other tissues examined under the same experimental conditions as those used for the pigment epithelium, onlt intestine showed measurable activity. With larger amounts of tissue protein and longer incubation periods, activity was also detectable in microsomes of liver, testis and retina  相似文献   

6.
The binding characteristics of the β-adrenergic agonist (±)-[3H]hydroxybenzylisoproterenol to rat adipocyte membranes were studied. Binding was rapid, reaching equilibrium within 10 min at 37°C (second order rate constant k1=1.37·107·M?1·min?1). Dissociation of specific binding by 0.5 mM (?)-isoproterenol suggested dissociation from two different sites with respective dissociation rate constants k2 of 0.106·min?1 and 0.011·min?1.[3H]Hydroxybenzylisoproterenol binding was saturable (Bmax=690±107 fmol/mg protein), yielding curvilinear Scatchard plots. Computer modeling of these data were consistent with the existence of two classes of [3H]hydroxybenzylisoproterenol binding sites, one having high affinity (KD=3.5±0.7 nM) but low binding capacity (10% of the total sites) and one haveing low affinity (KD=101±20 nM) but high binding capacity (90% of the sites). Adrenergic ligands competed with [3H]hydroxybenzylisoproterenol binding with the following order of potency=(?)-propranolol>(?)-isoproterenol>(?)-norepinephrine≈ (?)-epinephrine>>(+)-isoproterenol=(+)-propranolo, which is consistent with binding to β1-adrenergic receptors. Competition curves of [3H]hydroxybenzylisoproterenol binding by the β-agonist (?)-isoproterenol were shallow and modeled to two affinity states of binding, whereas, competition curves by β-antagonist (?)-propranolol were steeper with Hill number near to one. Gpp[NH]p severely reduced [3H]hydroxybenzyl-isoproterenol binding, an effect which apparently resulted from the reduction of the number of both the high and low affinity sites. In membranes which had been previously exposed to (?)-isoproterenol, then number of [3H]hydroxybenzylisoproterenol binding sites was reduced by 50%, an effect which apparently resulted from the loss of part of both the high and low affinity state binding sites. Finally, the ability of (?)-isoproterenol to stimulate adenylate cyclase correlate closely with the ability of (?)-isoproterenol to displace [3H]hydroxybenzylisoproterenol binding. Comparison of these findings with the binding characteristics of the β-antagonist [3H]dihydroalprenolol to rat adipocyte membranes, led to conclude that [3H]hydroxybenzylisoproterenol can be successfully used to label the β-adrenergic receptors of rat fat cells and suggests that it might be a better ligand than [3H]dihydroalprenolol in these cells.  相似文献   

7.
The postnatal development of mammalian skeletal muscle is associated with an increased capacity for glycogenolysis. In the present study rabbit skeletal muscle underwent a 7-fold increase in glycogen synthase and glycogen phosphorylase activity over the postnatal period of 0–8 weeks. An enriched fraction of sarcolemma was prepared from neonatal and adult muscle to examine the development of the β-adrenergic receptor-adenylate cyclase system. Adult membranes possessed a 2-fold greater Na+K+(Mg2+)-ATPase activity and a 6–8-fold greater sodium fluoride- and epinephrine-stimulated adenylate cyclase activity. The activation ratio (effector activity/basal activity) increased 2–3-fold for epinephrine and sodium fluoride in adult sarcolemma. The activation by catecholamines conformed to the physiological β2 type response with isoproterenol (1.8 · 10?8 M) > epinephrine (1.1 · 10?7 M) > norinephrine (3.2 · 10?6 M). In contrast, binding studies employing (?)-[3H] dihydroalprenolol showed little difference between neonatal and adult membranes with respect to (1) number of binding sites, (2) equilibrium dissociation constant and (3) displacement of (?)-[3H]dihydroalprenolol by catecholamine agonists.Protein and lipid components of the sarcolemma were also modified during development. Neonatal membranes possessed two glycopeptides of Mr 80 000 and 86 000, whereas in the adult only a single Mr 133 000 species was evident. The total lipid phosphorus and phospholipid composition was unchanged during development. The content of linoleic acid increased approx. 3-fold during development in the phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine phospholipids. The cholesterol content of adult membranes was decreased by 29% compared to neonatal membranes.  相似文献   

8.
The uptake, binding, and subcellular sites of accumulation of [3H]-cyclosporine (CS) in two human gingival fibroblast strains, GN 23 and GN 54, have been examined. GN 23 responds to CS treatment with a decrease in collagenolysis, while GN 54 does not. Binding of the drug was determined using [3H]-CS concentrations ranging from 10?5 to 10?8 M in the absence or presence of excess unlabeled CS (1 mM). The binding of the drug to both strains was specific and reached a plateau within 10 min, remaining at that level for up to 1 h. Scatchard analysis of the specific binding of [3H]-CS to the responsive GN 23 strain revealed two dissociation constants: KD = 5 × 10?8 M (1.2 × 107 sites/cell) and KD = 1.4 × 10?6 M (2.2 × 108 sites/cell). GN 54, on the other hand, had only one class of low affinity binding site (KD = 0.47 × 10?6 M [1.2 × 108 sites/cell]). Unlabeled CS (0.01–1 mM) inhibited the binding of [3H]-CS in a dose-dependent manner to both strains, as did the calmodulin antagonist W-7, to a lesser extent. However, W-7 inhibited CS binding much more efficiently in GN 54 than in GN 23, suggesting that calmodulin may be the predominant CS receptor in GN 54. In both strains, 70% of the drug accumulated in the crude nuclear fraction after a 1 min incubation, with very little (? 4%) being membrane associated, and the remainder was in the cytosol. In GN 23, CS levels in the crude nuclear fraction reached 80% by 20 min, and remained at this level for up to 1 h. In contrast, in GN 54, at incubation times of more than 1 min, the drug did not selectively accumulate in the crude nuclear fraction, but appeared to be in equilibrium between the nuclear and cytosolic fractions. These data show that the CS resistance of human gingival fibroblasts was not due to their inability to take up and bind CS. Rather, the different effects of CS on the collagenolysis of the responder and non-responder fibroblast strains may be related to the types of CS receptors they possess and differences in the cellular metabolism of CS occurring after binding, including the subcellular sites of drug accumulation. © 1993 Wiley-Liss, Inc.  相似文献   

9.
Membranes of neuron-like NG108-15 hybrid cells bind [3H]quinuclidinyl benzilate (QNB) with high affinity and specificity. Greater than 90% of total [3H]QNB binding is to sites having the pharmacological specificity of muscarinic acetylcholine receptors. Three significant features characterize the interaction of ligands with these sites: (1) Specific binding of [3H]QNB at equilibrium follows a simple adsorption isotherm with an apparent KD of 1 × 10?10 M; (2) Rates of [3H]QNB association and dissociation are biphasic and, as the binding reaction proceeds, the fraction of readily dissociable [3H]QNB decreases; (3) Competition against [3H]QNB for specific binding sites by antagonists gives a slope of 1 when analyzed on Hill plots, but competition for binding sites by agonists gives a slope of less than 1. A simple two-step model for activation is proposed to account for these features.  相似文献   

10.
[3H]Ouabain binding to intact MDCK (cultured monolayers of dog kidney) cells of 60 serial passages is dependent upon ouabain concentration, time and medium K+. By utilising high K+ incubations to estimate non-specific [3H]ouabain-binding, the concentration of ouabain giving half maximal specific binding was estimated to be 1.0 · 10?7 M and the total maximum binding to be 2.33 · 105 sites/cell. Ouabain inhibition of (Na+, K+)-pump function was monitored by the cellular uptake of B6Rb over 5 min. The larger fraction of B6Rb uptake was ouabain sensitive and the ouabain concentration giving half-maximal inhibition was 2 · 10?7 M. The cellular distribution of the (Na+ + K+)-ATPase was investigated using [3H]ouabain autoradiography of intact freeze-dried epithelial monolayers of MDCK cells grown upon millipore filter supports. Binding of [3H]ouabain is localised over the lateral cellular membranes. Autoradiographic silver grain density is close to background levels over both the apical and basal (attachment) membranes.  相似文献   

11.
[3H]Dihydroalprenolol, a potent ß-adrenergic antagonist, was used to identify the adenylate cyclase-coupled ß-adrenoceptors in isolated membranes of rat skeletal muscle. The receptor sites, as revealed [3H]dihydroalprenolol binding, were predominantly localized in plasmalemmal fraction. That skeletal muscle fraction may also contain the plasmalemma of other intramuscular cells, especially that of blood vessels. Hence, the [3H]dihydroalprenolol binding observed in that fraction may be due partly to its binding to the plasmalemma of blood vessels. Small but consistent binding was also observed in sarcoplasmic reticulum and mitochondria. The level of [3H]dihydroalprenolol binding in different subcellular fractions closely correlated with the level of adenylate cyclase present in those fractions.The binding of [3H]dihydroalprenolol to plasmalemma exhibited saturation kinetics. The binding was rapid, reaching equilibrium within 5 min, and it was readily dissociable. From the kinetics of binding, association (K1) and dissociation (K2) rate constants of 2.21 · M? · min?1 and 3.21 · 10?1, respectively, were obtained. The dissociation constant (Kd) of 15 nM for [3H]dihydroalprenolol obtained from saturation binding data closely agreed with the (Kd) derived from the ratio of dissociation and association rate constants (K2/K1).Several β-adrenergic agents known to be active on intact skeletal muscle also competed for [3H]dihydroalprenolol binding sites in isolated plasmalemma with essentially similar selectivity and stereospecificity. Catecholamines competed for [3H]dihydroalprenolol binding sites with a potency of isoproterenol > epinephrine > norepinephrine. A similar order of potency was noted for catecholamines in the activation of adenylate cyclase. Effects of catecholamines were stereospecific, (?)-isomers being more than potent than (+)-isomers. Phenylephrine, an α-adrenergic agonist, showed no effect either on [3H]dihydroalprenolol binding or on adenylate cyclase. Known ß-adrenergic antagonists, propranolol and alprenolol, stereospecifically inhibited the [3H]dihydroalprenolol binding and the isoproterenol-stimulated adenylate cyclase. The (Ki) values for the antagonists determined from inhibition of [3H]dihydroalprenolol binding agreed closely with the (Ki) values obtained from the inhibition of adenylate cyclase. The data suggest that the binding of [3H]dihydroalprenolol in skeletal muscle membranes possess the characteristics of a substance binding to the ß-adrenergic receptor.  相似文献   

12.
Low- and high-affinity binding sites for cyclic GMP were found to be associated with the cyclic AMP-dependent protein kinase (ATP: protein phosphotransferase, EC 2.7.1.37) from human tonsillar lymphocytes, but neither of them was identical with the cyclic AMP binding site.The enzyme activated by cyclic GMP phosphorylated the same site of calf thymus H2b histone as the cyclic AMP activated enzyme; however, more complex kinetics of activation were found with cyclic GMP.Two classes of cyclic GMP binding site were demonstrated by kinetic analysis of cyclic [3H]GMP binding in the enzyme preparations eluted by 0.1 M potassium phosphate (pH 7.0) from DEAE cellulose. The high-affinity cyclic GMP binding site (Kd about 44 · 10?8 M belonged to some complex form of the protein kinase, as evidenced by the mutual inhibition of cyclic AMP binding and high affinity cyclic GMP binding. However, the high-affinity cyclic GMP binding site disappeared on Sephadex G-100 gel chromatography of the enzyme preparation, whereas the cyclic AMP binding activity was recovered quantitively as separate fractions. The low-affinity cyclic GMP binding site (Kd 2–5 · 10?6 M) was demonstrated by the inhibitory effect of 10?5 M cyclic GMP on cyclic AMP binding in each cyclic AMP binding fraction obtained by gel chromatography. However, cyclic AMP did not inhibit the binding of cyclic GMP to the low-affinity binding site.  相似文献   

13.
Membranes of isolated adrenocortical cells have binding sites for [3H] d-α-tocopherol which exhibit specificity, saturability, time and temperature dependence, and reversibility of binding. The apparent equilibrium association constants (4 × 10?5M and 7 × 10?6M) for binding suggest that these binding sites are physiologically significant. Stability data indicate that binding sites are at least partly protein in constitution.  相似文献   

14.
Cultured chick embryo cardiac myoblasts specifically bind [3H]nonrepinephrine. The binding is rapid and reversible. Bound [3H]nonrepinephrine, dissociated by 1 M HCl, can be rebound to fresh cells. β-Adrenergic catecholamines were most potent in displacing [3H]nonrepinephrine from the cellular bindign sites. The binding reaction did not show stereospecificity. α-Adrenergic amines were much less potent. Propranolol, but no phentolamine, competed for the sites. Approximately 2.5 · 106 specific binding sites are present per myocardial cell. The sites appear to be present predominantly at the cell surface in that nonrepinephrine linked to agarose beads competes for th sites. Similarly, the sites were degraded by either trypsin or trypsin bound to agarose. Two different binding constants, K = 2 · 106 and 1 · 105, were observed. Proteolytic enzymes decreased binding whereas certain hospholipases led to an increase in specific binding. Divalent cations at concentrations > 1 mM diminished binding as did chelating agents.  相似文献   

15.
A high-affinity dexamethasone binding macromolecule was identified in WI-38 human fetal lung fibroblasts. High specificity of binding for glucocorticoidc was shown by competition studies in which binding of dexamethasone was inhibited by cortisol and corticosterone but not by testosterone of 17β-estradiol. WI-38 cells exposed to [3H]dexamethasone at 30°C were able to transfer the 3H-labeled steroid-receptor complex to the nuclear material. A reduction of 30–50% was observed in the number of [3H]dexamethasone-receptor binding sites per cell as well as in the nuclear fraction of the cells as a function of age (passage levels 27 and 54). However, in the same cells no significant changes in affinity of receptor for [3H]dexamethasone as a function of the two passage levels were detected.  相似文献   

16.
The effect of cortisol on cultured fibroblasts from human skin were studied. After 0–84-h preincubations in the presence of cortisol the cells were labeled for 12 h with [3H]thymidine, [3H]proline or [3H]glucosamine and the radioactivity incorporated into DNA, collagen, total proteins, hyaluronic acid and sulphated glycosaminoglycans was determined.Cortisol (1 · 10?5 M) caused a rapid, progressive decrease in the synthesis of hyaluronic acid when compared to the controls. Similarly, it decreased the synthesis of sulphated glycosaminoglycans and DNA, but this was seen first after 12- and 24-h preincubations, respectively. The synthesis of collagen and other proteins was significantly increased when the preincubation time was 0–24 h. This stimulation, however, turned to inhibition when an 84-h preincubation was used. It was found that 1 · 10?7 M cortisol was the lowest concentration which caused the early inhibition in hyaluronate synthesis, while even 1 · 10?8 M was sufficient after an 84-h preincubation. The syntheses of sulphated glucosaminoglycans and DNA were significantly inhibited by 1 · 10?8 and 1 · 10?7 M cortisol, after an 54-h preincubation, respectively. Thus, the studies of cortisol effects on fibroblast functions may result in quite variable conclusions unless the time sequence and the steroid concentration effects are taken into account.  相似文献   

17.
The temperature dependence of uptake of [3H]dexamethasone by rat thymocytes in suspension and of the intracellular distribution of the bound hormone was studied as a function of time of incubation. The transport of [3H]dexamethasone was found to obey a simple solubility-diffusion mechanism. The permeability coefficient for glucocorticoid transport corresponded to values reported for other nonelectrolytes of a similar size through biological membranes. At temperatures ranging from 0 to 42 °C, the permeability coefficient increased with temperature and no maximum was observed. However, the maximum cellular uptake of the hormone varied depending on the temperature and time of incubation. Maximal uptake of [3H]dexamethasone was observed at 30 min when the reaction mixture was incubated at 30 °C; when incubated at 20 °C, maximum uptake of [3H]dexamethasone was observed at 3 h. These data were interpreted to mean that there was competition between two temperature-dependent processes, namely steroid transport and inactivation of intracellular binding sites. Intracellular hormone was observed to bind to specific sites as well as to nonspecific, presumably membranal sites. Two independent methods, one of which is based on a linear plot of uptake versus extracellular hormone concentration, gave similar values for the amount of specifically bound hormone, estimated to be 3300 molecules per cell. The binding results are in accord with the sequence of events previously proposed for the interaction of glucocorticoids with thymocytes. These events include nonspecific uptake, specific cytoplasmic binding, a highly temperature-dependent translocation into the nucleus, intranuclear binding, as well as receptor inactivation and regeneration. The amount of intracellular bound hormone and its distribution between the cytoplasmic and nuclear fractions showed no equilibrium or steady-state phenomenon throughout extended periods of incubation up to 28 h. The experiments verified kinetic equations which predicted maximum nuclear binding of the hormone at a given time, followed by an appreciable and progressive reduction in the binding of the hormone to cytoplasmic and nuclear fractions.  相似文献   

18.
A receptor with specificity and high affinity for hydrocortisone (HC) has been found in the cytosol of GH3 cells, a growth hormone (GH) producing culture. Scatchard analysis indicated that the interaction of [3H]HC with the receptor has an apparent dissociation constant (Kd) of about 6.0 × 10?9M and a concentration of binding sites of approx. 1 × 10?13 mol/mg cytosol protein. The second order association rate constant was determined to be 1.5 × 106 M?1 min?1. The receptor activity is stable at 2°C for several hours, but is destroyed completely by heating at 37°C for 1 hour, or by treatment with pronase, only partially by RNase, but not by DNase. The binding of [3H]HC to the cytosol receptor is inhibited by unlabeled progesterone (PR) or dexamethasone to the same extent as the inhibition by unlabeled HC. However, it is only partially inhibited by testosterone, 17-methyl-testosterone, 17α and 17β-estradiol, and 4-pregnen-20β-ol-3-one, and is unaffected by 5α-pregnan-3β,20β-diol. The biological role for these receptors in the regulation of GH synthesis is supported by the observations that the HC-stimulated production of GH is antagonized by PR, which competes with the binding of HC to the receptor.  相似文献   

19.
20.
The Transplantable B-16 melanotic melanoma carried in syngeneic C57B1/6J female mice and the Syrian hamster melanoma cell line, RPMI 3460, were utilized to determine whether steroid-hormone receptors are present in animal melanomas. In the B-16 melanoma, a cytoplasmic-estrogen receptor is detectable, but there is no evidence for androgen or progestin receptors. Some tumors contain a glucocorticoid-binding macromolecule. Sucrosedensity gradient centrifugation of cytosol after incubation with [3H]-estradiol revealed an 8S peak that was suppressed by excess radioinert diethylstilbesterol. Binding varied from 5–35 fmoles per mg cytosol protein. Scatchard analysis of [3H]-estradiol binding in cytosol yielded a single class of high-affinity binding sites; the dissociation constant is 6 × 10?10 M. The receptor molecule is shown to be estrogen-specific by ligand competition assays. In contrast to B-16 melanoma, no estrogen, androgen, or progestin receptor can be found in the Syrian hamster melanoma cell line. However, a substantial level of specific binding is observed using [3H]-dexamethasone. Sucrose-gradient centrifugation of cytosol from this cell line after incubation with [3H]-dexamethasone revealed a 7S peak that was suppressed by excess radioinert dexamethasone. Scatchard analysis indicated a single class of high affinity sites with a dissociation constant of 2 × 10?9 M. Binding levels from 70–610 fmoles per mg cytosol protein were observed. The Syrian hamster melanoma cells also exhibit a biological response to glucocorticoids: Dexamethasone causes both an inhibition of growth and a decrease in final-cell density in these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号