首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Advanced resources for genome‐assisted research in barley (Hordeum vulgare) including a whole‐genome shotgun assembly and an integrated physical map have recently become available. These have made possible studies that aim to assess genetic diversity or to isolate single genes by whole‐genome resequencing and in silico variant detection. However such an approach remains expensive given the 5 Gb size of the barley genome. Targeted sequencing of the mRNA‐coding exome reduces barley genomic complexity more than 50‐fold, thus dramatically reducing this heavy sequencing and analysis load. We have developed and employed an in‐solution hybridization‐based sequence capture platform to selectively enrich for a 61.6 megabase coding sequence target that includes predicted genes from the genome assembly of the cultivar Morex as well as publicly available full‐length cDNAs and de novo assembled RNA‐Seq consensus sequence contigs. The platform provides a highly specific capture with substantial and reproducible enrichment of targeted exons, both for cultivated barley and related species. We show that this exome capture platform provides a clear path towards a broader and deeper understanding of the natural variation residing in the mRNA‐coding part of the barley genome and will thus constitute a valuable resource for applications such as mapping‐by‐sequencing and genetic diversity analyzes.  相似文献   

2.
Hierarchical shotgun sequencing remains the method of choice for assembling high‐quality reference sequences of complex plant genomes. The efficient exploitation of current high‐throughput technologies and powerful computational facilities for large‐insert clone sequencing necessitates the sequencing and assembly of a large number of clones in parallel. We developed a multiplexed pipeline for shotgun sequencing and assembling individual bacterial artificial chromosomes (BACs) using the Illumina sequencing platform. We illustrate our approach by sequencing 668 barley BACs (Hordeum vulgare L.) in a single Illumina HiSeq 2000 lane. Using a newly designed parallelized computational pipeline, we obtained sequence assemblies of individual BACs that consist, on average, of eight sequence scaffolds and represent >98% of the genomic inserts. Our BAC assemblies are clearly superior to a whole‐genome shotgun assembly regarding contiguity, completeness and the representation of the gene space. Our methods may be employed to rapidly obtain high‐quality assemblies of a large number of clones to assemble map‐based reference sequences of plant and animal species with complex genomes by sequencing along a minimum tiling path.  相似文献   

3.
We report on a whole‐genome draft sequence of rye (Secale cereale L.). Rye is a diploid Triticeae species closely related to wheat and barley, and an important crop for food and feed in Central and Eastern Europe. Through whole‐genome shotgun sequencing of the 7.9‐Gbp genome of the winter rye inbred line Lo7 we obtained a de novo assembly represented by 1.29 million scaffolds covering a total length of 2.8 Gbp. Our reference sequence represents nearly the entire low‐copy portion of the rye genome. This genome assembly was used to predict 27 784 rye gene models based on homology to sequenced grass genomes. Through resequencing of 10 rye inbred lines and one accession of the wild relative S. vavilovii, we discovered more than 90 million single nucleotide variants and short insertions/deletions in the rye genome. From these variants, we developed the high‐density Rye600k genotyping array with 600 843 markers, which enabled anchoring the sequence contigs along a high‐density genetic map and establishing a synteny‐based virtual gene order. Genotyping data were used to characterize the diversity of rye breeding pools and genetic resources, and to obtain a genome‐wide map of selection signals differentiating the divergent gene pools. This rye whole‐genome sequence closes a gap in Triticeae genome research, and will be highly valuable for comparative genomics, functional studies and genome‐based breeding in rye.  相似文献   

4.
5.
Bread wheat (Triticum aestivum L.) is the most important staple food crop for 35% of the world's population. International efforts are underway to facilitate an increase in wheat production, of which the International Wheat Genome Sequencing Consortium (IWGSC) plays an important role. As part of this effort, we have developed a sequence‐based physical map of wheat chromosome 6A using whole‐genome profiling (WGP?). The bacterial artificial chromosome (BAC) contig assembly tools fingerprinted contig (fpc ) and linear topological contig (ltc ) were used and their contig assemblies were compared. A detailed investigation of the contigs structure revealed that ltc created a highly robust assembly compared with those formed by fpc . The ltc assemblies contained 1217 contigs for the short arm and 1113 contigs for the long arm, with an L50 of 1 Mb. To facilitate in silico anchoring, WGP? tags underlying BAC contigs were extended by wheat and wheat progenitor genome sequence information. Sequence data were used for in silico anchoring against genetic markers with known sequences, of which almost 79% of the physical map could be anchored. Moreover, the assigned sequence information led to the ‘decoration’ of the respective physical map with 3359 anchored genes. Thus, this robust and genetically anchored physical map will serve as a framework for the sequencing of wheat chromosome 6A, and is of immediate use for map‐based isolation of agronomically important genes/quantitative trait loci located on this chromosome.  相似文献   

6.
MingCheng Luo  Kavitha Madishetty  Jan T. Svensson  Matthew J. Moscou  Steve Wanamaker  Tao Jiang  Andris Kleinhofs  Gary J. Muehlbauer  Roger P. Wise  Nils Stein  Yaqin Ma  Edmundo Rodriguez  Dave Kudrna  Prasanna R. Bhat  Shiaoman Chao  Pascal Condamine  Shane Heinen  Josh Resnik  Rod Wing  Heather N. Witt  Matthew Alpert  Marco Beccuti  Serdar Bozdag  Francesca Cordero  Hamid Mirebrahim  Rachid Ounit  Yonghui Wu  Frank You  Jie Zheng  Hana Simková  Jaroslav Dolezel  Jane Grimwood  Jeremy Schmutz  Denisa Duma  Lothar Altschmied  Tom Blake  Phil Bregitzer  Laurel Cooper  Muharrem Dilbirligi  Anders Falk  Leila Feiz  Andreas Graner  Perry Gustafson  Patrick M. Hayes  Peggy Lemaux  Jafar Mammadov  Timothy J. Close 《The Plant journal : for cell and molecular biology》2015,84(1):216-227
Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole‐genome shotgun sequences with a physical and genetic framework. However, because only 6278 bacterial artificial chromosome (BACs) in the physical map were sequenced, fine structure was limited. To gain access to the gene‐containing portion of the barley genome at high resolution, we identified and sequenced 15 622 BACs representing the minimal tiling path of 72 052 physical‐mapped gene‐bearing BACs. This generated ~1.7 Gb of genomic sequence containing an estimated 2/3 of all Morex barley genes. Exploration of these sequenced BACs revealed that although distal ends of chromosomes contain most of the gene‐enriched BACs and are characterized by high recombination rates, there are also gene‐dense regions with suppressed recombination. We made use of published map‐anchored sequence data from Aegilops tauschii to develop a synteny viewer between barley and the ancestor of the wheat D‐genome. Except for some notable inversions, there is a high level of collinearity between the two species. The software HarvEST:Barley provides facile access to BAC sequences and their annotations, along with the barley–Ae. tauschii synteny viewer. These BAC sequences constitute a resource to improve the efficiency of marker development, map‐based cloning, and comparative genomics in barley and related crops. Additional knowledge about regions of the barley genome that are gene‐dense but low recombination is particularly relevant.  相似文献   

7.
8.
The 1.5 Gbp/2C genome of pedunculate oak (Quercus robur) has been sequenced. A strategy was established for dealing with the challenges imposed by the sequencing of such a large, complex and highly heterozygous genome by a whole‐genome shotgun (WGS) approach, without the use of costly and time‐consuming methods, such as fosmid or BAC clone‐based hierarchical sequencing methods. The sequencing strategy combined short and long reads. Over 49 million reads provided by Roche 454 GS‐FLX technology were assembled into contigs and combined with shorter Illumina sequence reads from paired‐end and mate‐pair libraries of different insert sizes, to build scaffolds. Errors were corrected and gaps filled with Illumina paired‐end reads and contaminants detected, resulting in a total of 17 910 scaffolds (>2 kb) corresponding to 1.34 Gb. Fifty per cent of the assembly was accounted for by 1468 scaffolds (N50 of 260 kb). Initial comparison with the phylogenetically related Prunus persica gene model indicated that genes for 84.6% of the proteins present in peach (mean protein coverage of 90.5%) were present in our assembly. The second and third steps in this project are genome annotation and the assignment of scaffolds to the oak genetic linkage map. In accordance with the Bermuda and Fort Lauderdale agreements and the more recent Toronto Statement, the oak genome data have been released into public sequence repositories in advance of publication. In this presubmission paper, the oak genome consortium describes its principal lines of work and future directions for analyses of the nature, function and evolution of the oak genome.  相似文献   

9.
The assembly of a reference genome sequence of bread wheat is challenging due to its specific features such as the genome size of 17 Gbp, polyploid nature and prevalence of repetitive sequences. BAC‐by‐BAC sequencing based on chromosomal physical maps, adopted by the International Wheat Genome Sequencing Consortium as the key strategy, reduces problems caused by the genome complexity and polyploidy, but the repeat content still hampers the sequence assembly. Availability of a high‐resolution genomic map to guide sequence scaffolding and validate physical map and sequence assemblies would be highly beneficial to obtaining an accurate and complete genome sequence. Here, we chose the short arm of chromosome 7D (7DS) as a model to demonstrate for the first time that it is possible to couple chromosome flow sorting with genome mapping in nanochannel arrays and create a de novo genome map of a wheat chromosome. We constructed a high‐resolution chromosome map composed of 371 contigs with an N50 of 1.3 Mb. Long DNA molecules achieved by our approach facilitated chromosome‐scale analysis of repetitive sequences and revealed a ~800‐kb array of tandem repeats intractable to current DNA sequencing technologies. Anchoring 7DS sequence assemblies obtained by clone‐by‐clone sequencing to the 7DS genome map provided a valuable tool to improve the BAC‐contig physical map and validate sequence assembly on a chromosome‐arm scale. Our results indicate that creating genome maps for the whole wheat genome in a chromosome‐by‐chromosome manner is feasible and that they will be an affordable tool to support the production of improved pseudomolecules.  相似文献   

10.
Using next‐generation sequencing, we developed the first whole‐genome resources for two hybridizing Nothofagus species of the Patagonian forests that crucially lack genomic data, despite their ecological and industrial value. A de novo assembly strategy combining base quality control and optimization of the putative chloroplast gene map yielded ~32 000 contigs from 43% of the reads produced. With 12.5% of assembled reads, we covered ~96% of the chloroplast genome and ~70% of the mitochondrial gene content, providing functional and structural annotations for 112 and 52 genes, respectively. Functional annotation was possible on 15% of the contigs, with ~1750 potentially novel nuclear genes identified for Nothofagus species. We estimated that the new resources (13.41 Mb in total) included ~4000 gene regions representing ~6.5% of the expected genic partition of the genome, the remaining contigs potentially being nongenic DNA. A high‐quality single nucleotide polymorphisms resource was developed by comparing various filtering methods, and preliminary results indicate a strong conservation of cpDNA genomes in contrast to numerous exclusive nuclear polymorphisms in both species. Finally, we characterized 2274 potential simple sequence repeat (SSR) loci, designed primers for 769 of them and validated nine of 29 loci in 42 individuals per species. Nothofagus obliqua had more alleles (4.89) on average than N. nervosa (2.89), 8 SSRs were efficient to discriminate species, and three were successfully transferred in three other Nothofagus species. These resources will greatly help for future inferences of demographic, adaptive and hybridizing events in Nothofagus species, and for conserving and managing natural populations.  相似文献   

11.
Fusarium pseudograminearum is an important pathogen of wheat and barley, particularly in semi‐arid environments. Previous genome assemblies for this organism were based entirely on short read data and are highly fragmented. In this work, a genetic map of F. pseudograminearum has been constructed for the first time based on a mapping population of 178 individuals. The genetic map, together with long read scaffolding of a short read‐based genome assembly, was used to give a near‐complete assembly of the four F. pseudograminearum chromosomes. Large regions of synteny between F. pseudograminearum and F. graminearum, the related pathogen that is the primary causal agent of cereal head blight disease, were previously proposed in the core conserved genome, but the construction of a genetic map to order and orient contigs is critical to the validation of synteny and the placing of species‐specific regions. Indeed, our comparative analyses of the genomes of these two related pathogens suggest that rearrangements in the F. pseudograminearum genome have occurred in the chromosome ends. One of these rearrangements includes the transposition of an entire gene cluster involved in the detoxification of the benzoxazolinone (BOA) class of plant phytoalexins. This work provides an important genomic and genetic resource for F. pseudograminearum, which is less well characterized than F. graminearum. In addition, this study provides new insights into a better understanding of the sexual reproduction process in F. pseudograminearum, which informs us of the potential of this pathogen to evolve.  相似文献   

12.
A set of expressed sequence tag (EST) simple sequence repeat (SSR) markers were developed and characterized using next‐generation sequencing technology for the genus Diabelia (Caprifoliaceae). De novo assembly of RNA‐seq reads resulted in 58 669 contigs with the N50 length of 1211 bp. A total of 2746 contigs were identified to harbor SSR motifs, of which 48 primer pairs were designed and 11 were shown to be polymorphic across three morphospecies of Diabelia. When evaluated with 30 individuals, the number of alleles per locus ranged from 2 to 11 and the expected heterozygosity varied from 0.399 to 0.873, respectively. Distance‐based clustering indicated that the EST‐SSR markers can provide sufficient power to distinguish the three species (or populations). These markers will be useful for evaluating the range‐wide genetic diversity of each species and examining genetic divergence and gene flow between the three species.  相似文献   

13.
Flax (Linum usitatissimum) is an ancient crop that is widely cultivated as a source of fiber, oil and medicinally relevant compounds. To accelerate crop improvement, we performed whole‐genome shotgun sequencing of the nuclear genome of flax. Seven paired‐end libraries ranging in size from 300 bp to 10 kb were sequenced using an Illumina genome analyzer. A de novo assembly, comprised exclusively of deep‐coverage (approximately 94× raw, approximately 69× filtered) short‐sequence reads (44–100 bp), produced a set of scaffolds with N50 = 694 kb, including contigs with N50 = 20.1 kb. The contig assembly contained 302 Mb of non‐redundant sequence representing an estimated 81% genome coverage. Up to 96% of published flax ESTs aligned to the whole‐genome shotgun scaffolds. However, comparisons with independently sequenced BACs and fosmids showed some mis‐assembly of regions at the genome scale. A total of 43 384 protein‐coding genes were predicted in the whole‐genome shotgun assembly, and up to 93% of published flax ESTs, and 86% of A. thaliana genes aligned to these predicted genes, indicating excellent coverage and accuracy at the gene level. Analysis of the synonymous substitution rates (Ks) observed within duplicate gene pairs was consistent with a recent (5–9 MYA) whole‐genome duplication in flax. Within the predicted proteome, we observed enrichment of many conserved domains (Pfam‐A) that may contribute to the unique properties of this crop, including agglutinin proteins. Together these results show that de novo assembly, based solely on whole‐genome shotgun short‐sequence reads, is an efficient means of obtaining nearly complete genome sequence information for some plant species.  相似文献   

14.
Onychostoma macrolepis is an emerging commercial cyprinid fish species. It is a model system for studies of sexual dimorphism and genome evolution. Here, we report the chromosome‐level assembly of the O.macrolepis genome obtained from the integration of nanopore long‐read sequencing with physical maps produced using Bionano and Hi‐C technology. A total of 87.9 Gb of nanopore sequence provided approximately 100‐fold coverage of the genome. The preliminary genome assembly was 883.2 Mb in size with a contig N50 size of 11.2 Mb. The 969 corrected contigs obtained from Bionano optical mapping were assembled into 853 scaffolds and produced an assembly of 886.5 Mb with a scaffold N50 of 16.5 Mb. Finally, using the Hi‐C data, 881.3 Mb (99.4% of genome) in 526 scaffolds were anchored and oriented in 25 chromosomes ranging in size from 25.27 to 56.49 Mb. In total, 24,770 protein‐coding genes were predicted in the genome, and ~96.85% of the genes were functionally annotated. The annotated assembly contains 93.3% complete genes from the BUSCO reference set. In addition, we identified 409 Mb (46.23% of the genome) of repetitive sequence, and 11,213 non‐coding RNAs, in the genome. Evolutionary analysis revealed that O. macrolepis diverged from common carp approximately 24.25 million years ago. The chromosomes of O. macrolepis showed an unambiguous correspondence to the chromosomes of zebrafish. The high‐quality genome assembled in this work provides a valuable genomic resource for further biological and evolutionary studies of O. macrolepis.  相似文献   

15.
The ladybird beetle Propylea japonica is an important natural enemy in agro‐ecological systems. Studies on the strong tolerance of P. japonica to high temperatures and insecticides, and its population and phenotype diversity have recently increased. However, abundant genome resources for obtaining insights into stress‐resistance mechanisms and genetic intra‐species diversity for P. japonica are lacking. Here, we constructed the P. japonica genome maps using Pacific Bioscience (PacBio) and Illumina sequencing technologies. The genome size was 850.90 Mb with a contig N50 of 813.13 kb. The Hi‐C sequence data were used to upgrade draft genome assemblies; 4,777 contigs were assembled to 10 chromosomes; and the final draft genome assembly was 803.93 Mb with a contig N50 of 813.98 kb and a scaffold N50 of 100.34 Mb. Approximately 495.38 Mb of repeated sequences was annotated. The 18,018 protein‐coding genes were predicted, of which 95.78% were functionally annotated, and 1,407 genes were species‐specific. The phylogenetic analysis showed that P. japonica diverged from the ancestor of Anoplophora glabripennis and Tribolium castaneum ~ 236.21 million years ago. We detected that some important gene families involved in detoxification of pesticides and tolerance to heat stress were expanded in P. japonica, especially cytochrome P450 and Hsp70 genes. Overall, the high‐quality draft genome sequence of P. japonica will provide invaluable resource for understanding the molecular mechanisms of stress resistance and will facilitate the research on population genetics, evolution and phylogeny of Coccinellidae. This genome will also provide new avenues for conserving the diversity of predator insects.  相似文献   

16.
Here, we present an adaptation of restriction‐site‐associated DNA sequencing (RAD‐seq) to the Illumina HiSeq2000 technology that we used to produce SNP markers in very large quantities at low cost per unit in the Réunion grey white‐eye (Zosterops borbonicus), a nonmodel passerine bird species with no reference genome. We sequenced a set of six pools of 18–25 individuals using a single sequencing lane. This allowed us to build around 600 000 contigs, among which at least 386 000 could be mapped to the zebra finch (Taeniopygia guttata) genome. This yielded more than 80 000 SNPs that could be mapped unambiguously and are evenly distributed across the genome. Thus, our approach provides a good illustration of the high potential of paired‐end RAD sequencing of pooled DNA samples combined with comparative assembly to the zebra finch genome to build large contigs and characterize vast numbers of informative SNPs in nonmodel passerine bird species in a very efficient and cost‐effective way.  相似文献   

17.
Analysis of microbial biodiversity is hampered by a lack of reference genomes from most bacteria, viruses, and algae. This necessitates either the cultivation of a restricted number of species for standard sequencing projects or the analysis of highly complex environmental DNA metagenome data. Single‐cell genomics (SCG) offers a solution to this problem by constraining the studied DNA sample to an individual cell and its associated symbionts, prey, and pathogens. We used SCG to study marine heterotrophic amoebae related to Paulinella ovalis (A. Wulff) P.W. Johnson, P.E. Hargraves & J.M. Sieburth (Rhizaria). The genus Paulinella is best known for its photosynthetic members such as P. chromatophora Lauterborn that is the only case of plastid primary endosymbiosis known outside of algae and plants. Here, we studied the phagotrophic sister taxa of P. chromatophora that are related to P. ovalis and found one SCG assembly to contain α‐cyanobacterial DNA. These cyanobacterial contigs are presumably derived from prey. We also uncovered an associated cyanophage lineage (provisionally named phage PoL_MC2). Phylogenomic analysis of the fragmented genome assembly suggested a minimum genome size of 200 Kbp for phage PoL_MC2 that encodes 179 proteins and is most closely related to Synechococcus phage S‐SM2. For this phage, gene network analysis demonstrates a highly modular genome structure typical of other cyanophages. Our work demonstrates that SCG is a powerful approach for discovering algal and protist biodiversity and for elucidating biotic interactions in natural samples.  相似文献   

18.
Generating a contiguous, ordered reference sequence of a complex genome such as hexaploid wheat (2n = 6x = 42; approximately 17 GB) is a challenging task due to its large, highly repetitive, and allopolyploid genome. In wheat, ordering of whole‐genome or hierarchical shotgun sequencing contigs is primarily based on recombination and comparative genomics‐based approaches. However, comparative genomics approaches are limited to syntenic inference and recombination is suppressed within the pericentromeric regions of wheat chromosomes, thus, precise ordering of physical maps and sequenced contigs across the whole‐genome using these approaches is nearly impossible. We developed a whole‐genome radiation hybrid (WGRH) resource and tested it by genotyping a set of 115 randomly selected lines on a high‐density single nucleotide polymorphism (SNP) array. At the whole‐genome level, 26 299 SNP markers were mapped on the RH panel and provided an average mapping resolution of approximately 248 Kb/cR1500 with a total map length of 6866 cR1500. The 7296 unique mapping bins provided a five‐ to eight‐fold higher resolution than genetic maps used in similar studies. Most strikingly, the RH map had uniform bin resolution across the entire chromosome(s), including pericentromeric regions. Our research provides a valuable and low‐cost resource for anchoring and ordering sequenced BAC and next generation sequencing (NGS) contigs. The WGRH developed for reference wheat line Chinese Spring (CS‐WGRH), will be useful for anchoring and ordering sequenced BAC and NGS based contigs for assembling a high‐quality, reference sequence of hexaploid wheat. Additionally, this study provides an excellent model for developing similar resources for other polyploid species.  相似文献   

19.
Ficus erecta, a wild relative of the common fig (F. carica), is a donor of Ceratocystis canker resistance in fig breeding programmes. Interspecific hybridization followed by recurrent backcrossing is an effective method to transfer the resistance trait from wild to cultivated fig. However, this process is time consuming and labour intensive for trees, especially for gynodioecious plants such as fig. In this study, genome resources were developed for F. erecta to facilitate fig breeding programmes. The genome sequence of F. erecta was determined using single‐molecule real‐time sequencing technology. The resultant assembly spanned 331.6 Mb with 538 contigs and an N50 length of 1.9 Mb, from which 51 806 high‐confidence genes were predicted. Pseudomolecule sequences corresponding to the chromosomes of F. erecta were established with a genetic map based on single nucleotide polymorphisms from double‐digest restriction‐site‐associated DNA sequencing. Subsequent linkage analysis and whole‐genome resequencing identified a candidate gene for the Ceratocystis canker resistance trait. Genome‐wide genotyping analysis enabled the selection of female lines that possessed resistance and effective elimination of the donor genome from the progeny. The genome resources provided in this study will accelerate and enhance disease‐resistance breeding programmes in fig.  相似文献   

20.
Wild barley (Hordeum spontaneum) is the progenitor of cultivated barley (Hordeum vulgare) and provides a rich source of genetic variations for barley improvement. Currently, the genome sequences of wild barley and its differences with cultivated barley remain unclear. In this study, we report a high‐quality draft assembly of wild barley accession (AWCS276; henceforth named as WB1), which consists of 4.28 Gb genome and 36 395 high‐confidence protein‐coding genes. BUSCO analysis revealed that the assembly included full lengths of 95.3% of the 956 single‐copy plant genes, illustrating that the gene‐containing regions have been well assembled. By comparing with the genome of the cultivated genotype Morex, it is inferred that the WB1 genome contains more genes involved in resistance and tolerance to biotic and abiotic stresses. The presence of the numerous WB1‐specific genes indicates that, in addition to enhance allele diversity for genes already existing in the cultigen, exploiting the wild barley taxon in breeding should also allow the incorporation of novel genes. Furthermore, high levels of genetic variation in the pericentromeric regions were detected in chromosomes 3H and 5H between the wild and cultivated genotypes, which may be the results of domestication. This H. spontaneum draft genome assembly will help to accelerate wild barley research and be an invaluable resource for barley improvement and comparative genomics research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号