首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
This work reports on combining current‐voltage characteristics, electroluminescence (EL) measurements, and modeling to identify the selectivity of the electrodes in bulk‐heterojunction organic solar cells. Devices with the same photoactive layer but different contact materials are compared and the impact of surface recombination at the contacts on their performance is determined. The open‐circuit voltage, V OC, depends strongly on the selectivity of the electrodes and it is observed that the EL signal of cells with lower V OC is dramatically reduced. This is ascribed to an enhanced rate of surface recombination, which is a non‐radiative recombination pathway and does therefore not contribute to the EL yield. In addition, these cells have a lower current in forward direction despite the fact that the surface recombination occurs in addition to the recombination in the bulk. A theoretical model was set up and in the corresponding numerical simulations all three findings (lower V OC, strongly reduced EL signal and lower forward current) could be clearly reproduced by varying just one single parameter which determines the selectivity of the electrode.  相似文献   

4.
Nongeminate recombination in organic solar cells based on copper phthalocyanine (CuPc) and C60 is investigated. Two device architectures, the planar heterojunction (PHJ) and the bulk heterojunction (BHJ), are directly compared in view of differences in charge carrier decay dynamics. A combination of transient photovoltage (TPV) experiments, yielding the small perturbation charge carrier lifetime, and charge extraction measurements, providing the charge carrier density is applied. In organic solar cells, charge photogeneration and recombination primarily occur at the donor–acceptor heterointerface. Whereas the BHJ can often be approximated by an effective medium due to rather small scale phase separation, the PHJ has a well defined two‐dimensional heterointerface. In order to study nongeminate recombination dynamics in PHJ devices the charge accumulation at this interface is most relavent. As only the spatially averaged carrier concentration can be determined from extraction techniques, the charge carrier density at the interface nint is derived from the open circuit voltage. Comparing the experimental results with macroscopic device simulation, the differences of recombination and charge carrier densities in CuPc:C60 PHJ and BHJ devices are discussed with respect to the device performance. The open circuit voltage of BHJ is larger than for PHJ at low light intensities, but at 0.3 sun the situation is reversed: here, the PHJ can finally take advantage of its generally longer charge carrier lifetimes, as the active recombination region is smaller.  相似文献   

5.
We report on the effects of screening of the electric field by doping‐induced mobile charges on photocurrent collection in operational organic solar cells. Charge transport and recombination were studied using double injection (DI) and charge extraction by linearly increasing voltage (CELIV) transient techniques in bulk‐heterojunction solar cells made from acceptor‐donor blends of poly(3‐n‐hexylthiophene):phenyl‐C61‐butyric acid methyl ester (P3HT:PC60BM). It is shown that the screening of the built‐in field in operational solar cells can be controlled by an external voltage while the influence on charge transport and recombination is measured. An analytical theory to extract the bimolecular recombination coefficient as a function of electric field from the injection current is also reported. The results demonstrate that the suppressed (non‐Langevin) bimolecular recombination rate and charge collection are not strongly affected by native doping levels in this materials combination. Hence, it is not necessary to reduce the level of doping further to improve the device performance of P3HT‐based solar cells.  相似文献   

6.
Organic solar cells lag behind their inorganic counterparts in efficiency due largely to low open‐circuit voltages (Voc). In this work, a comprehensive framework for understanding and improving the open‐circuit voltage of organic solar cells is developed based on equilibrium between charge transfer (CT) states and free carriers. It is first shown that the ubiquitous reduced Langevin recombination observed in organic solar cells implies equilibrium and then statistical mechanics is used to calculate the CT state population density at each voltage. This general result permits the quantitative assignment of Voc losses to a combination of interfacial energetic disorder, non‐negligible CT state binding energies, large degrees of mixing, and sub‐ns recombination at the donor/acceptor interface. To quantify the impact of energetic disorder, a new temperature‐dependent CT state absorption measurement is developed. By analyzing how the apparent CT energy varies with temperature, the interfacial disorder can be directly extracted. 63–104 meV of disorder is found in five systems, contributing 75–210 mV of Voc loss. This work provides an intuitive explanation for why qVoc is almost always 500–700 meV below the energy of the CT state and shows how the voltage can be improved.  相似文献   

7.
Charge transport in organic photovoltaic (OPV) devices is often characterized by steady‐state mobilities. However, the suitability of steady‐state mobilities to describe charge transport has recently been called into question, and it has been argued that dispersion plays a significant role. In this paper, the importance of the dispersion of charge carrier motion on the performance of organic photovoltaic devices is investigated. An experiment to measure the charge extraction time under realistic operating conditions is set up. This experiment is applied to different blends and shows that extraction time is directly related to the geometrical average of the steady‐state mobilities. This demonstrates that under realistic operating conditions the steady‐state mobilities govern the charge extraction of OPV and gives a valuable insight in device performance.  相似文献   

8.
Multijunction solar cells are designed to improve the overlap with the solar spectrum and to minimize losses due to thermalization. Aside from the optimum choice of photoactive materials for the respective sub‐cells, a proper interconnect is essential. This study demonstrates a novel all‐oxide interconnect based on the interface of the high‐work‐function (WF) metal oxide MoOx and low‐WF tin oxide (SnOx). In contrast to typical p‐/n‐type tunnel junctions, both the oxides are n‐type semiconductors with a WF of 5.2 and 4.2 eV, respectively. It is demonstrated that the electronic line‐up at the interface of MoOx and SnOx comprises a large intrinsic interface dipole (≈0.8 eV), which is key to afford ideal alignment of the conduction band of MoOx and SnOx, without the requirement of an additional metal or organic dipole layer. The presented MoOx/SnOx interconnect allows for the ideal (loss‐free) addition of the open circuit voltages of the two sub‐cells.  相似文献   

9.
In organic solar cells (OSCs), the energy of the charge‐transfer (CT) complexes at the donor–acceptor interface, E CT, determines the maximum open‐circuit voltage (V OC). The coexistence of phases with different degrees of order in the donor or the acceptor, as in blends of semi‐crystalline donors and fullerenes in bulk heterojunction layers, influences the distribution of CT states and the V OC enormously. Yet, the question of how structural heterogeneities alter CT states and the V OC is seldom addressed systematically. In this work, we combine experimental measurements of vacuum‐deposited rubrene/C60 bilayer OSCs, with varying microstructure and texture, with density functional theory calculations to determine how relative molecular orientations and extents of structural order influence E CT and V OC. We find that varying the microstructure of rubrene gives rise to CT bands with varying energies. The CT band that originates from crystalline rubrene lies up to ≈0.4 eV lower in energy compared to the one that arises from amorphous rubrene. These low‐lying CT states contribute strongly to V OC losses and result mainly from hole delocalization in aggregated rubrene. This work points to the importance of realizing interfacial structural control that prevents the formation of low E CT configurations and maximizes V OC.  相似文献   

10.
11.
Interfacial energetics determines the performance of organic photovoltaic (OPV) cells based on a thin film of organic semiconductor blends. Here, an approach to modulating the “carrier selectivity” at the charge collecting interfaces and the consequent variations in the nongeminate charge carrier recombination dynamics in OPV devices are demonstrated. A ferroelectric blend interfacial layer composed of a solution‐processable ferroelectric poly­mer and a wide bandgap semiconductor is introduced as a tunable electron selective layer in inverted OPV devices with non‐Ohmic contact electrodes. The direct rendering of dipole alignment within the ferroelectric blend layer is found to increase the carrier selectivity of the charge collecting interfaces up to two orders of magnitude. Transient photovoltaic analyses reveal that the increase of carrier selectivity significantly reduces the diffusion and recombination among minority carriers in the vicinity of the electrodes, giving rise to the 85% increased charge carrier lifetime. Furthermore, the carrier‐selective charge extraction leads to the constitution of the internal potential within the devices, even with energetically identical cathodes and anodes. With these carrier‐selectivity‐controlled interlayers, the devices based on various photoactive materials commonly display significant increments in the device performances, especially with the high fill factor of up to 0.76 under optimized conditions.  相似文献   

12.
13.
Charge transport and recombination are studied for organic solar cells fabricated using blends of polymer poly[(4,4′‐bis(2‐ethylhexyl)dithieno[3,2‐b:2′,3′‐d]silole)‐2,6‐diyl‐alt‐(4,7‐bis(2‐thienyl)‐2,1,3‐benzothiadiazole)‐5,5′‐diyl] (Si‐PCPDTBT) with [6,6]‐phenyl‐C61‐butyric acid methyl ester (mono‐PCBM) and the bis‐adduct analogue of mono‐PCBM (bis‐PCBM). The photocurrent of Si‐PCPDTBT:bis‐PCBM devices shows a strong square root dependence on the effective applied voltage. From the relationship between the photocurrent and the light intensity, we found that the square‐root dependence of the photocurrent is governed by the mobility‐lifetime (μτ) product of charge carriers while space‐charge field effects are insignificant. The fill factor (FF) and short circuit current density (Jsc) of bis‐PCBM solar cells show a considerable increase with temperature as compared to mono‐PCBM solar cells. SCLC analysis of single carrier devices proofs that the mobility of both electrons and holes is significantly lowered when replacing mono‐PCBM with bis‐PCBM. The increased recombination in Si‐PCPDTBT:bis‐PCBM solar cells is therefore attributed to the low carrier mobilities, as the transient photovoltage measurements show that the carrier lifetime of devices are not significantly altered by using bis‐PCBM instead of mono‐PCBM.  相似文献   

14.
The best organic solar cells (OSCs) achieve comparable peak external quantum efficiencies and fill factors as conventional photovoltaic devices. However, their voltage losses are much higher, in particular those due to nonradiative recombination. To investigate the possible role of triplet states on the donor or acceptor materials in this process, model systems comprising Zn‐ and Cu‐phthalocyanine (Pc), as well as fluorinated versions of these donors, combined with C60 as acceptor are studied. Fluorination allows tuning the energy level alignment between the lowest energy triplet state (T1) and the charge‐transfer (CT) state, while the replacement of Zn by Cu as the central metal in the Pcs leads to a largely enhanced spin–orbit coupling. Only in the latter case, a substantial influence of the triplet state on the nonradiative voltage losses is observed. In contrast, it is found that for a large series of typical OSC materials, the relative energy level alignment between T1 and the CT state does not substantially affect nonradiative voltage losses.  相似文献   

15.
The light intensity dependence of the main photoelectrical parameters of the nonfullerene small‐molecule bulk heterojunction (BHJ) solar cells p‐DTS(FBTTh2)2:perylene diimide (T1:PDI) shows that the nongeminate recombination losses play an important role in this system. A simple approach for the quantitative analysis of capacitance spectroscopy data of the organic BHJ solar cells, which allows to determine the density of free charge carriers as a function of applied bias under standard working conditions, is demonstrated. Using the proposed capacitance spectroscopic technique, the nongeminate recombination losses in the T1:PDI solar cells are quantitatively characterized in the scope of the bimolecular‐ and trap‐assisted recombination mechanisms. Their contributions are separately analyzed within a wide range of the applied bias.  相似文献   

16.
The origin of photocurrent losses in the power‐generating regime of organic solar cells (OSCs) remains a controversial topic, although recent literature suggests that the competition between bimolecular recombination and charge extraction determines the bias dependence of the photocurrent. Here the steady‐state recombination dynamics is studied in bulk‐heterojunction OSCs with different hole mobilities from short‐circuit to maximum power point. It is shown that in this regime, in contrast to previous transient extracted charge and absorption spectroscopy studies, first‐order recombination outweighs bimolecular recombination of photogenerated charge carriers. This study demonstrates that the first‐order losses increase with decreasing slower carrier mobility, and attributes them to either mobilization of charges trapped at the donor:acceptor interface through the Poole–Frenkel effect, and/or recombination of photogenerated and injected charges. The dependence of both first‐order and higher‐order losses on the slower carrier mobility explains why the field dependence of OSC efficiencies has historically been attributed to charge‐extraction losses.  相似文献   

17.
Molecular dynamics simulations are combined with density functional theory calculations to evaluate the impact of static and dynamic disorders on the energy distribution of charge‐transfer (CT) states at donor–acceptor heterojunctions, such as those found in the active layers of organic solar cells. It is shown that each of these two disorder components can be partitioned into contributions related to the energetic disorder of the transport states and to the disorder associated with the hole–electron electrostatic interaction energies. The methodology is applied to evaluate the energy distributions of the CT states in representative bulk heterojunctions based on poly‐3‐hexyl‐thiophene and phenyl‐C61‐butyric‐acid methyl ester. The results indicate that the torsional fluctuations of the polymer backbones are the main source of both static and dynamic disorders for the CT states as well as for the transport levels. The impact of static and dynamic disorders on radiative and nonradiative geminate recombination processes is also discussed.  相似文献   

18.
A vacancy‐ordered double perovskite, Cs2SnI6, has emerged as a promising lead‐free perovskite in the optoelectronic field. However, the charge transfer kinetics mediated by its surface state remains unclear. Here, the charge transfer mechanism of Cs2SnI6 is reported and the role of its surface state in the presence of a redox mediator is clarified. Specifically, charge transfer through the surface state of Cs2SnI6 and its subsequent surface state charging are demonstrated by cyclic voltammetry and Mott–Schottky measurements, respectively. Because it is expected that the surface state of Cs2SnI6 is capable of regenerating oxidized organic dyes, a Cs2SnI6‐based regenerator is developed for a dye‐sensitized solar cell composed of fluorine‐doped tin oxide (FTO)/dyed mesoporous TiO2/regenerator/poly(3,4‐ethylenedioxythiophene)/FTO. As expected, the performance of the Cs2SnI6‐based regenerator is strongly dependent on the highest occupied molecular orbital of the dyes. Consequently, Cs2SnI6 shows efficient charge transfer with a thermodynamically favorable charge acceptor level, achieving a 79% enhancement in the photocurrent density (14.1 mA cm?2) compared with that of a conventional liquid electrolyte (7.9 mA cm?2). The results suggest that the surface state of Cs2SnI6 is the main charge transfer pathway in the presence of a redox mediator and should be considered in future designs of Cs2SnI6‐based devices.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号