首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nature killer(NK) cells are important lymphocytes of the innate immune system,well known for their pivotal roles in immune surveillance and defense against tumor and virus-infected cells.Current studies have revealed that NK cells are not a homogeneous population,but instead consist of distinct subsets with diverse characteristics.As an organ with predominant innate immunity,the liver is enriched with NK cells,among which two distinct NK cell subsets have recently been identified:conventional NK(cNK)cells and tissue-resident NK(trNK) cells.Liver trNK cells are markedly different from cNK cells in many aspects,representing a new lineage of innate lymphoid cell(ILC) family.Here,we summarize the phenotypic and functional features of liver trNK cells,and review current knowledge regarding developmental pathway of liver trNK cells.We also overview recent advances in human liver trNK cells and discuss the striking shared hallmarks of trNK cells in different tissues.  相似文献   

2.
Natural killer (NK) cells are abundant in the liver and have been implicated in inducing hepatocellular damage in patients with chronic hepatitis B virus (HBV) infection. However, the role of NK cells in acute HBV infection remains to be elucidated. We comprehensively characterized NK cells and investigated their roles in HBV clearance and liver pathology in 19 chronic hepatitis B (CHB) patients and 21 acute hepatitis B (AHB) patients as well as 16 healthy subjects. It was found that NKp46+ NK cells were enriched in the livers of AHB and CHB patients. We further found that peripheral NK cells from AHB patients expressed higher levels of activation receptors and lower levels of inhibitory receptors than those from CHB patients and HC subjects, thus displaying the increased cytolytic activity and interferon-γ production. NK cell activation levels were also correlated positively with serum alanine aminotransferase levels and negatively with plasma HBV DNA levels in AHB patients, which is further confirmed by the longitudinal follow-up of AHB patients. Serum pro-inflammatory cytokine and chemokine levels were also increased in AHB patients as compared with CHB and HC subjects. Thus, the concomitantly increased interferon-γ and cytotoxicity of NK cells were associated with liver injury and viral clearance in AHB patients.  相似文献   

3.
The mechanisms of immune evasion and the role of the early immune response in chronic infection caused by hepatitis C virus (HCV) are still unclear. Here, we present evidence for a cascade of molecular events that the virus initiates to subvert the innate immune attack. The HCV core protein induced p53-dependent gene expression of TAP1 (transporter associated with antigen processing 1) and consecutive major histocompatibility complex (MHC) class I upregulation. Moreover, in p53-deficient liver cell lines, only reconstitution with wild-type p53, but not mutated p53 lacking DNA binding capacity, showed this effect. As a consequence of increased MHC class I expression, a significantly downregulated cytotoxic activity of natural killer (NK) cells against HCV core-transfected liver cells was observed, whereas lysis by HCV-specific cytotoxic T cells was not affected. These results demonstrate a way in which HCV avoids recognition by NK cells that may contribute to the establishment of a chronic infection.  相似文献   

4.
Infection of SCID mice with a recombinant murine coronavirus (mouse hepatitis virus [MHV]) expressing the T-cell chemoattractant CXC chemokine ligand 10 (CXCL10) resulted in increased survival and reduced viral burden within the brain and liver compared to those of mice infected with an isogenic control virus (MHV), supporting an important role for CXCL10 in innate immune responses following viral infection. Enhanced protection in MHV-CXCL10-infected mice correlated with increased gamma interferon (IFN-γ) production by infiltrating natural killer (NK) cells within the brain and reduced liver pathology. To explore the underlying mechanisms associated with protection from disease in MHV-CXCL10-infected mice, the functional contributions of the NK cell-activating receptor NKG2D in host defense were examined. The administration of an NKG2D-blocking antibody to MHV-CXCL10-infected mice did not reduce survival, dampen IFN-γ production in the brain, or affect liver pathology. However, NKG2D neutralization increased viral titers within the liver, suggesting a protective role for NKG2D signaling in this organ. These data indicate that (i) CXCL10 enhances innate immune responses, resulting in protection from MHV-induced neurological and liver disease; (ii) elevated NK cell IFN-γ expression in the brain of MHV-CXCL10-infected mice occurs independently of NKG2D; and (iii) NKG2D signaling promotes antiviral activity within the livers of MHV-infected mice that is not dependent on IFN-γ and tumor necrosis factor alpha secretion.  相似文献   

5.
Natural killer (NK) cells are key players of the innate immune system. NK cells provide protection against infectious pathogens and malignancies in cell. This characteristic may be attributable to their intrinsic diverse potentialities and also their cooperation with adaptive immune lymphocytes, known as B and T cells. The growth, recurrence, and metastasis of cancer cells, and the failure of cytoreductive therapies against cancer cells are due to the small population of intratumor stem-like cells, called cancer stem cells (CSCs). Furthermore, NK cells can efficiently eradicate heterogeneous tumor cells after a long-term treatment. Therefore, NK cell–based therapy is a promising strategy to target and break CSC-associated resistance to anticancer drugs treatment. In this review, we have presented an overview of the emerging knowledge of the characteristics, diversities, and mechanism-driven immune surveillance of human NK cells and advances in NK cell–based immunotherapies. Finally, we will discuss how these cells can be applied to introduce the next generation of vaccine- and immune-based approaches to prevent drug resistance.  相似文献   

6.
The role of natural killer (NK) cells in the natural resistance of mice to infections by several viruses was examined. Mice were specifically depleted of NK cells by i.v. injection of rabbit antiserum to asialo GM1, a neutral glycosphingolipid present at high concentrations on the surface of NK cells. Control mice were left untreated or were injected with normal rabbit serum. Four to 6 hr later, these mice were infected with lymphocytic choriomeningitis virus (LCMV), mouse hepatitis virus (MHV), murine cytomegalovirus (MCMV), or vaccinia virus. The mice were sacrificed 3 days post-infection and assayed for virus in liver and spleen, spleen NK cell activity, and plasma interferon (IFN). All mice treated with anti-asialo GM1 antibody had drastically reduced NK cell-mediated lysis. Correlating with NK cell depletion, these mice had significantly higher (up to 500-fold) titers of MCMV, MHV, or vaccinia virus in their livers and spleens as compared to control mice. NK cell-depleted MCMV and MHV-infected mice had higher levels of plasma IFN than controls, correlating with the higher virus titers. These NK cell-depleted, virus-infected mice had more extensive hepatitis, assayed by the number of inflammatory foci in their livers, as compared to control virus-infected mice; these foci were also larger and contained more degenerating liver cells than those in control mice. In contrast to the results obtained with MHV, MCMV, and vaccinia virus, NK cell depletion had no effect on virus titers in the early stages of acute LCMV infection or during persistent LCMV infection. Mice depleted of NK cells had similar amounts of LCMV in their spleens and similar plasma IFN levels. Because this antibody to asialo GM1 does not impair other detectable immunologic mechanisms, these data support the hypothesis that NK cells act as a natural resistance mechanism to a number of virus infections, but suggest that their relative importance may vary from virus to virus.  相似文献   

7.
In recent years, tremendous progress has been made in the elucidation of the biological roles and molecular mechanisms of the apolioprotein B mRNA-editing enzyme catalytic polypeptide (APOBEC) family of enzymes. The APOBEC family of cytidine deaminases has important functional roles within the adaptive and innate immune system. Activation induced cytidine deaminase (AID) plays a central role in the biochemical steps of somatic hypermutation and class switch recombination during antibody maturation, and the APOBEC 3 enzymes are able to inhibit the mobility of retroelements and the replication of retroviruses and DNA viruses, such as the human immunodeficiency virus type-1 and hepatitis B virus. Recent advances in structural and functional studies of the APOBEC enzymes provide new biochemical insights for how these enzymes carry out their biological roles. In this review, we provide an overview of these recent advances in the APOBEC field with a special emphasis on AID and APOBEC3G.  相似文献   

8.
Natural killer(NK) cells, which recognize and kill target cells independent of antigen specificity and major histocompatibility complex(MHC) matching, play pivotal roles in immune defence against tumors. However, tumor cells often acquire the ability to escape NK cell-mediated immune surveillance. Thus, understanding mechanisms underlying regulation of NK cell phenotype and function within the tumor environment is instrumental for designing new approaches to improve the current cell-based immunotherapy. In this review, we elaborate the main biological features and molecular mechanisms of NK cells that pertain to regulation of NK cell-mediated anti-tumor activity. We further overview current clinical approaches regarding NK cell-based cancer therapy, including cytokine infusion, adoptive transfer of autologous or allogeneic NK cells, applications of chimeric antigen receptor(CAR)-expressing NK cells and adoptive transfer of memory-like NK cells. With these promising clinical outcomes and fuller understanding the basic questions raised in this review, we foresee that NK cell-based approaches may hold great potential for future cancer immunotherapy.  相似文献   

9.
NK cells are a subpopulation of lymphocytes characterized primarily by their cytolytic activity. They are recognized as an important component of the immune response against virus infection and tumors. In addition to their cytolytic activity, NK cells also participate either directly or indirectly in the regulation of the ongoing Ab response. More recently, it has been suggested that NK cells have an important role in the outcome of autoimmune diseases. Here, we demonstrate that human NK cells can induce autologous resting B cells to synthesize Ig, including switching to IgG and IgA, reminiscent of a secondary Ab response. B cell activation by the NK cell is contact-dependent and rapid, suggesting an autocrine B cell-regulated process. This NK cell function is T cell-independent, requires an active cytoplasmic membrane, and is blocked by anti-CD40 ligand (anti-CD154) or CD40-mIg fusion protein, indicating a critical role for CD40-CD40 ligand interaction. Depletion studies also demonstrate that CD5+ B cells (autoreactive B-1 cells) and a heterogeneous population of CD27+ memory B cells play a critical role in the Ig response induced by NK cells. The existence of this novel mechanism of B cell activation has important implications in innate immunity, B cell-mediated autoimmunity, and B cell neoplasia.  相似文献   

10.
Natural killer (NK) cells are an important part of the innate immune response. They have the ability to recognize and kill many types of tumor cells and promote immunity against intracellular pathogens. In this study, we analyzed the in situ localization of NK cells within wildtype and immunodeficient mice using a novel in situ analysis method. We have identified NK cells in tissues of B6 and B6.Rag1(-/-) mice and demonstrated an increase in the percentage of NK cells and the total number of NK cells in the lung and liver of immunodeficient mice. This increase was not due to an increase in NK cell activation. This study describes a means to identify NK cells within complex tissue environments, and the increase in NK cells in non-lymphoid tissues may explain much of the increased NK cell activity observed in T-cell-deficient mice.  相似文献   

11.
Natural killer (NK) cells play a pivotal role in the innate immune response to viral infections, particularly murine cytomegalovirus (MCMV) and human herpesviruses. In poxvirus infections, the role of NK cells is less clear. We examined disease progression in C57BL/6 mice after the removal of NK cells by both antibody depletion and genetic means. We found that NK cells were crucial for survival and the early control of virus replication in spleen and to a lesser extent in liver in C57BL/6 mice. Studies of various knockout mice suggested that gammadelta T cells and NKT cells are not important in the C57BL/6 mousepox model and CD4+ and CD8+ T cells do not exhibit antiviral activity at 6 days postinfection, when the absence of NK cells has a profound effect on virus titers in spleen and liver. NK cell cytotoxicity and/or gamma interferon (IFN-gamma) secretion likely mediated the antiviral effect needed to control virus infectivity in target organs. Studies of the effects of ectromelia virus (ECTV) infection on NK cells demonstrated that NK cells proliferate within target tissues (spleen and liver) and become activated following a low-dose footpad infection, although the mechanism of activation appears distinct from the ligand-dependent activation observed with MCMV. NK cell IFN-gamma secretion was detected by intracellular cytokine staining transiently at 32 to 72 h postinfection in the lymph node, suggesting a role in establishing a Th1 response. These results confirm a crucial role for NK cells in controlling an ECTV infection.  相似文献   

12.
Natural killer (NK) cells are the principal effector cell population in innate immune defense against many types of infections. These cells are enriched in the liver, where they comprise approximately 40% to 60% of the intrahepatic lymphocyte pool compared to the peripheral blood compartment. In chronic HBV and HCV infection, NK cells were reported to be partially dysfunctional due to impaired IFN-Γ secretion. Few studies have examined phenotypic features of NK cells in acute hepatitis. We identified NK (CD56+CD3-) cell populations in patients with acute hepatitis by examining the expressions of phenotypic NK cell markers (CD16, NKG2A, and NKG2D). Peripheral blood mononuclear cells were isolated from patients with acute hepatitis A (7) and patients with non-viral acute toxic hepatitis (6) during the symptomatic and convalescent phases. Expressions of NK (CD56+CD3-) cell markers, CD16, NKG2A, and NKG2D, were measured by flow cytometry. Symptomatic acute hepatitis including non-viral hepatitis and HAV infection showed significant increases of NKG2A expression compared to healthy controls. Interestingly, there was a direct correlation between the proportion of NK cell populations and liver function parameters (AST, ALT) in HAV infection. The strong correlation was also observed between the expression of NKG2A+NK cells and ALT, which suggests that most of NK cells in severe phase of disease express high level of NKG2A on their surface. In addition, decreased number of NK cells (CD56+CD3-) in symptomatic phase began to increase in the convalescent phase of acute hepatitis A. However, the expression of NKG2A tended to be reduced, which indicates that NKG2A, the inhibitory receptor on NK cells, can be a severity parameter in acute hepatitis.  相似文献   

13.
Chemokines were shown to govern the trafficking of immune cells and may also play important roles in the survival and activation of these cells. We report here that under physiological conditions, the bone marrow (BM), spleen, blood and liver of Ccr5, but not of Ccr1-deficient mice, contain reduced numbers of NK cells. NK cells in the BM of Ccr5-deficient mice proliferate to a lesser extent compared to WT mice. Furthermore, spleen NK cells derived from Ccr5-deficient mice that were transplanted into irradiated recipients failed to proliferate in the host. Ccr5, but not Ccr1-deficient NK cells, failed to migrate in vitro in response to RANTES and MIP-1β but not MIP-1β or SDF-1 and had reduced activation, lower expression levels of NK cell markers and a slightly reduced capacity to adhere to target cells and stimulate their killing. Using the polyI:C mouse model for NK trafficking, we found that in the absence of Ccr5, but not Ccr1, NK cells failed to accumulate in the liver. In contrast, using the influenza viral infection as a model to evaluate NK cell proliferation, we found that Ccr5-deficient NK cells in the BM had a higher proliferation rate than WT NK cells. These results suggest a role for Ccr5 in NK cell proliferation and circulation under physiological conditions and a complex role for Ccr5 in determining the fate of NK cells under pathological conditions.  相似文献   

14.
NK cells are the major lymphocyte subset of the innate immune system that mediates antiviral and anti-tumor responses. It is well established that they develop mechanisms to distinguish self from non-self during the process of NK cell education. Unlike T and B cells, natural killer cells lack clonotypic receptors and are activated after recognizing their target via germline-encoded receptors through natural cytotoxicity, cytokine stimulation, and Ab-dependent cellular cytotoxicity. Subsequently, they utilize cytotoxic granules, death receptor ligands, and cytokines to perform their effector functions. In this review, we provide a general overview of human NK cells, as opposed to murine NK cells, discussing their ontogeny, maturation, receptor diversity, types of responses, and effector functions. Furthermore, we also describe recent advances in human NK cell biology, including tissue-resident NK cell populations, NK cell memory, and novel approaches used to target NK cells in cancer immunotherapy.  相似文献   

15.
During chronic hepatitis C virus (HCV) infection, the role of intra-hepatic (IH) natural killer (NK) cells is still controversial. To clarify their functions, we investigated anti-viral and cytotoxic activity of NK cells in human fresh liver biopsies. We compared the functions of IH-NK cells in HCV-infected and NASH patients in physiological conditions as well as after stimulation using flow cytometric and immunohistochemical analyses. Interestingly, few IH-NK cells produced anti-viral cytokine IFN-γ in HCV-infected patients similarly as in non-infected individuals. Spontaneous degranulation activity was extremely low in peripheral NK cells compared to IH-NK cells, and was significantly higher in IH-NK cells from HCV-infected patients compared to non-infected individuals. Immunohistochemical analysis revealed that perforin granules were polarized at the apical pole of IH-NK cells. The presence of CD107a and perforin in IH-NK cells demonstrated that NK cells exerted a cytolytic activity at the site of infection. Importantly, IH-NK cell functions from HCV-infected patients were inducible by specific exogenous stimulations. Upon ex vivo K562 target cell stimulations, the number of degranulating NK cells was significantly increased in the pool of IH-NK cells compared to circulating NK cells. Interestingly, after stimulation, the frequency of IFN-γ-producing IH-NK cells in HCV-infected patients was significantly higher at early stage of inflammation whereas the spontaneous IH-NK cell degranulation activity was significantly impaired in patients with highest inflammation and fibrosis Metavir scores. Our study highlights that some IH-NK cells in HCV-infected patients are able to produce INF-γ and degranulate and that those two activities depend on liver environment including the severity of liver injury. Thus, we conclude that critical roles of IH-NK cells have to be taken into account in the course of the liver pathogenesis associated to chronic HCV infection.  相似文献   

16.
How chemokines shape the immune response to viral infection of the central nervous system (CNS) has largely been considered within the context of recruitment and activation of antigen-specific lymphocytes. However, chemokines are expressed early following viral infection, suggesting an important role in coordinating innate immune responses. Herein, we evaluated the contributions of CXC chemokine ligand 10 (CXCL10) in promoting innate defense mechanisms following coronavirus infection of the CNS. Intracerebral infection of RAG1(-/-) mice with a recombinant CXCL10-expressing murine coronavirus (mouse hepatitis virus) resulted in protection from disease and increased survival that correlated with a significant increase in recruitment and activation of natural killer (NK) cells within the CNS. Accumulation of NK cells resulted in a reduction in viral titers that was dependent on gamma interferon secretion. These results indicate that CXCL10 expression plays a pivotal role in defense following coronavirus infection of the CNS by enhancing innate immune responses.  相似文献   

17.
Natural killer (NK) cells belong to an important lymphocyte population that eliminates transformed cells and invading pathogens without any prior sensitization. NK cells possess not only natural killing activity against non-self and altered-self cells but also exhibit cytokine production and antibody-dependent cell-mediated cytotoxicity (ADCC). Despite their important roles in the innate immune system, little is known about the details of NK cell biology. In spite of that several murine NK cell clones have been established, studies have mainly focused on their natural killing activity but not their cytokine production or ADCC. In this study, we established and characterized eight novel, immortalized murine NK cell clones derived from a temperature-sensitive SV40 large-T antigen transgenic mouse. These NK cell lines continuously proliferated for more than 30 months in a culture medium supplemented with interleukin 2. All cell lines contained azurophilic granules in the cytoplasm, and a few clones retained the NK cell functions, such as natural killing activity, cytokine production, and ADCC. In addition, one clone could serve as a host for transient as well as stable gene transfection. Taken together, these findings indicate that the cell lines could constitute useful tools for detailed analysis of murine NK cell biology.  相似文献   

18.
Following influenza infection, natural killer (NK) cells function as interim effectors by suppressing viral replication until CD8 T cells are activated, proliferate, and are mobilized within the respiratory tract. Thus, NK cells are an important first line of defense against influenza virus. Here, in a murine model of influenza, we show that virally-induced IL-15 facilitates the trafficking of NK cells into the lung airways. Blocking IL-15 delays NK cell entry to the site of infection and results in a disregulated control of early viral replication. By the same principle, viral control by NK cells can be therapeutically enhanced via intranasal administration of exogenous IL-15 in the early days post influenza infection. In addition to controlling early viral replication, this IL-15-induced mobilization of NK cells to the lung airways has important downstream consequences on adaptive responses. Primarily, depletion of responding NK1.1+ NK cells is associated with reduced immigration of influenza-specific CD8 T cells to the site of infection. Together this work suggests that local deposits of IL-15 in the lung airways regulate the coordinated innate and adaptive immune responses to influenza infection and may represent an important point of immune intervention.  相似文献   

19.
NK cells and cancer   总被引:5,自引:0,他引:5  
In this review, we overview the main features and functions of NK cells, focusing on their role in cell-mediated immune response to tumor cells. In parallel, we discuss the information available in the field of NK cell receptors and offer a wide general overview of functional aspects of cell targeting and killing, focusing on the recent acknowledgments on the efficacy of NK cells after cytokine and mAb administration in cancer therapy. Since efficacy of NK cell-based immunotherapy has been proven in KIR-mismatch regimens or in TRAIL-dependent apoptosis, the ability to manipulate the balance of activating and inhibitory receptors on NK cells and of their cognate ligands, as well as the sensitivity of tumor cells to apoptosis, opens new perspectives for NK cell-based immunotherapy.  相似文献   

20.
IL-18 is a pleiotropic cytokine and is produced by various types of cells including activated macrophages, particularly Kupffer cells. IL-18 has potential to activate inflammatory responses through induction of IFN-gamma production in collaboration with IL-12. Somewhat paradoxically, IL-18 also has the capacity to induce allergic responses via induction of IL-4 production by T helper cells and to activate mast cells and basophils to release atopic effector molecules such as histamine. Indeed, IL-18 is involved in inflammatory tissue injuries, such as Crohn's disease and atherosclerosis, and also in hyper IgE and atopic dermatitis. IL-18 is particularly important for induction of experimental liver diseases. Endotoxin-induced liver injury or Fas ligand-induced hepatitis is caused by endogenous IL-18 in mice. Moreover, patients with liver diseases such as fulminant hepatitis, liver cirrhosis due to hepatitis virus infection and primary biliary cirrhosis show elevation of serum levels of IL-18, that correlates with the corresponding disease severity. Therefore, endogenous IL-18 plays a major role in induction of some types of liver injuries in mice and human. NKT cells that express both T cell receptor and NK cell marker are abundant in the liver of mice and human. Recent studies have revealed that NKT cells participate in some types of liver injuries, such as concanavalin A-induced T cell-mediated hepatitis and malaria hepatitis. In this review article, we focus on IL-18-involving liver damages and NKT-cell-mediated liver injuries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号