首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Active loading of sucrose into phloem companion cells (CCs) is an essential process in apoplastic loaders, such as Arabidopsis or tobacco (Nicotiana sp.), and is even used by symplastic loaders such as melon (Cucumis melo) under certain stress conditions. Reduction of the amount or complete removal of the transporters catalysing this transport step results in severe developmental defects. Here we present analyses of two Arabidopsis lines, suc2-4 and suc2-5, that carry a null allele of the SUC2 gene which encodes the Arabidopsis phloem loader. These lines were complemented with constructs expressing either the Arabidopsis SUC1 or the Ustilago maydis srt1 cDNA from the SUC2 promoter. Both SUC1 and Srt1 are energy-dependent sucrose/H(+) symporters and differ in specific kinetic properties from the SUC2 protein. Transgene expression was confirmed by RT-PCRs, the subcellular localization of Srt1 in planta with an Srt1-RFP fusion, and the correct CC-specific localization of the recombinant proteins by immunolocalization with anti-Srt1 and anti-SUC1 antisera. The transport capacity of Srt1 was studied in Srt1-GFP expressing Arabidopsis protoplasts. Although both proteins were found exclusively in CCs, only SUC1 complemented the developmental defects of suc2-4 and suc2-5 mutants. As SUC1 and Srt1 are well characterized, this result provides an insight into the properties that are essential for sucrose transporters to load the phloem successfully.  相似文献   

2.
Summary Polyacrylamide gel electrophoresis (without SDS) of invertases from strains each carrying only one of the five known SUC-genes revealed differences in mobility of the internal enzymes. SUC1 invertase moved distinctly slower than the invertases formed in the presence of genes SUC2 to SUC5. Three bands of internal invertase activity were found in diploids carrying both SUC1 (slow invertase) and one of the other SUC-genes (fast invertases). Tetrad analysis of such diploids yielded haploids which showed the same three bands if they carried SUC1 in combination with another SUC gene. A gene dosage effect was observed in relation to invertase activity in haploid strains with only gene SUC1 or only SUC4 on one hand, and both genes on the other hand. A sucrose non-fermenting and invertase negative strain with mutant allele suc3-3 of gene SUC3 (fast invertase) was crossed with SUC1. The heterozygous diploid and the recombinant haploids (SUC1 suc3-3) showed two bands in the region of the internal invertase: a slow SUC1 band and a second band corresponding to the intermediate band of SUC1-SUC3 strains. The intermediate band in SUC1 suc3-3 strains is considered as a hybrid consisting of an active SUC1-monomer and an inactive suc3-mutant monomer. Formation of such hybrid bands was taken as evidence for the structural nature of SUC-genes.  相似文献   

3.
An important, most likely essential step for the long distance transport of sucrose in higher plants is the energy-dependent, uncoupler-sensitive loading into phloem cells via a sucrose-H+ symporter. This paper describes functional expression in Saccharomyces cerevisiae of two cDNAs encoding energy-dependent sucrose transporters from the plasma membrane of Arabidopsis thaliana, SUC1 and SUC2. Yeast cells transformed with vectors allowing expression of either SUC1 or SUC2 under the control of the promoter of the yeast plasma membrane ATPase gene (PMA1) transport sucrose, and to a lesser extent also maltose, across their plasma membranes in an energy-dependent manner. The KM-values for sucrose transport are 0.50 mM and 0.77 mM, respectively, and transport by both proteins is strongly inhibited by uncouplers such as carbonyl cyanide m-chlorophenylhydrazone (CCCP) and dinitrophenol (DNP), or SH-group inhibitors. The VMAX but not the KM-values of sucrose transport depend on the energy status of transgenic yeast cells. The two proteins exhibit different patterns of pH dependence with SUC1 being much more active at neutral and slightly acidic pH values than SUC2. The proteins share 78% identical amino acids, their apparent molecular weights are 54.9 kDa and 54.5 kDA, respectively, and both proteins contain 12 putative transmembrane helices. A modified SUC1-His6 cDNA encoding a histidine tag at the SUC1 C-terminus was also expressed in S. cerevisiae. The tagged protein is fully active and is shown to migrate at an apparent molecular weight of 45 kDa on 10% SDS—polyacrylamide gels.  相似文献   

4.
Using molecular karyotyping and genetic hybridization analysis, two new polymeric β-fructosidase genes, SUC9 and SUC10, were identified in the yeast Saccharomyces cerevisiae, which are located on chromosome XIV and on the chromosome XVI/XIII doublet, respectively. The genes are responsible for fermentation of sucrose and raffinose. The SUC gene genotypes of strains VKM Y-1831 and DBVPG 1340 are SUC2 SUC9 and suc2 0 SUC10, respectively. suc2 0 is a silent sequence. The scientific and applied significance of SUC genes is discussed.  相似文献   

5.
Summary The yeast invertase structural gene SUC2 has two naturally occurring alleles, the active one and a silent allele called suc2°. Strains carrying suc2° are unable to ferment sucrose and do not show detectable invertase activity. We have isolated suc2° and found an amber codon at position 232 of 532 amino acids. However, transformants carrying suc2° on a multicopy plasmid were able to ferment sucrose and showed detectable invertase activity. Full-length invertase was found in gels stained for active invertase and in immunoblots. Therefore we concluded that the amber codon is occasionally read as an amino acid. The calculated frequency of read-through is about 4% of all translation events.  相似文献   

6.
The bio1 auxotroph of Arabidopsis thaliana is a recessive embryonic lethal that forms normal plants in the presence of biotin. The purpose of this study was to determine whether aborted seeds produced by heterozygous plants grown without vitamin supplements contained reduced levels of biotin. Two methods were used to determine the biotin content of mutant and wild-type tissues: streptavidin binding in microtiter plates and growth of the biotin-requiring bacterium Lactobacillus plantarum. Total biotin was measured in extracts prepared from immature seeds prior to desiccation. Aborted seeds produced by heterozygous (bio1/BIO1) plants contained some biotin in the maternal seed coat but virtually no detectable biotin in the arrested embryo. This lack of biotin was not observed in arrested embryos from other mutants with similar patterns of abnormal development. These results are consistent with the model that bio1 tissues are defective in biotin synthesis. The alternative model of increased degradation is inconsistent with the recessive nature of the mutation and the ability of rescued plants to continue growing for several weeks following removal of supplemental biotin.  相似文献   

7.
Seed development largely depends on the long‐distance transport of sucrose from photosynthetically active source leaves to seed sinks. This source‐to‐sink carbon allocation occurs in the phloem and requires the loading of sucrose into the leaf phloem and, at the sink end, its import into the growing embryo. Both tasks are achieved through the function of SUT sucrose transporters. In this study, we used vegetable peas (Pisum sativum L.), harvested for human consumption as immature seeds, as our model crop and simultaneously overexpressed the endogenous SUT1 transporter in the leaf phloem and in cotyledon epidermal cells where import into the embryo occurs. Using this ‘Push‐and‐Pull’ approach, the transgenic SUT1 plants displayed increased sucrose phloem loading and carbon movement from source to sink causing higher sucrose levels in developing pea seeds. The enhanced sucrose partitioning further led to improved photosynthesis rates, increased leaf nitrogen assimilation, and enhanced source‐to‐sink transport of amino acids. Embryo loading with amino acids was also increased in SUT1‐overexpressors resulting in higher protein levels in immature seeds. Further, transgenic plants grown until desiccation produced more seed protein and starch, as well as higher seed yields than the wild‐type plants. Together, the results demonstrate that the SUT1‐overexpressing plants with enhanced sucrose allocation to sinks adjust leaf carbon and nitrogen metabolism, and amino acid partitioning in order to accommodate the increased assimilate demand of growing seeds. We further provide evidence that the combined Pushand‐Pull approach for enhancing carbon transport is a successful strategy for improving seed yields and nutritional quality in legumes.  相似文献   

8.
Zoospores of Chlamydomonas reinhardtii exhibit chemotaxis towards maltose, sucrose, xylose, mannitol, and ammonium. Ten independent mutants defective in chemotaxis towards sugars have been isolated. These mutants form five phenotypic classes. Genetic analysis of two mutant strains defective in chemotaxis to maltose (CHE1, CHE3) and two mutant strains defective in chemotaxis to sucrose (CHE2, CHE4) indicated that the defect in them depended on single nuclear recessive mutant alleles. Mutations mal1, mal2, suc1, and suc2 represent four chemotactic loci that are unlinked to the marker mt located on the linkage group VI. Four loci are unlinked to each other. These observations suggest that the mal and the suc loci do not constitute a spatially single functional group.  相似文献   

9.
10.
11.
Summary We have previously suggested that two positioned nucleosomes are removed from the promoter of the Saccharomyces cerevisiae SUC2 gene upon derepression by glucose starvation. To gain further insight into the changes accompanying derepression at the chromatin level we have studied the chromatin structure of the SUC2 promoter in several mutants affecting SUC2 expression. The non-derepressible mutants snf1, snf2 and snf5 present a chromatin structure characteristic of the repressed state, irrespective of the presence or absence of glucose. The non-repressible mutants, mig1 and ssn6, as well as the double mutant snfs sn6 exhibit an opened chromatin structure even in the presence of glucose. These results suggest that the DNA-binding protein encoded by MIG1 is necessary to produce the characteristic pattern of repressed chromatin and that the SNF1 protein kinase is sufficient to produce the derepressed chromatin pattern. A model is presented for the transitions that result in opening up of the chromatin structure.  相似文献   

12.
In angiosperms, cyclic electron transport (CET) around photosystem I (PSI) consists of two pathways, depending on PGR5/PGRL1 proteins and the chloroplast NDH complex. In single mutants defective in chloroplast NDH, photosynthetic electron transport is only slightly affected at low light intensity, but in double mutants impaired in both CET pathways photosynthesis and plant growth are severely affected. The question is whether this strong mutant phenotype observed in double mutants can be simply explained by the additive effect of defects in both CET pathways. In this study, we used the weak mutant allele of pgr5-2 for the background of double mutants to avoid possible problems caused by the secondary effects due to the strong mutant phenotype. In two double mutants, crr2-2 pgr5-2 and ndhs-1 pgr5-2, the plant growth was unaffected and linear electron transport was only slightly affected. However, NPQ induction was more severely impaired in the double mutants than in the pgr5-2 single mutant. A similar trend was observed in the size of the proton motive force. Despite the slight reduction in photosystem II parameters, PSI parameters were severely affected in the pgr5-2 single mutant, the phenotype that was further enhanced by adding the NDH defects. Despite the lack of ?pH-dependent regulation at the cytochrome b6f complex (donor-side regulation of PSI), the plastoquinone pool was more reduced in the double mutants than in the pgr5-2 single mutants. This phenotype suggests that both PGR5/PGRL1- and NDH-dependent CET contribute to supply sufficient acceptors from PSI by balancing the ATP/NADPH production ratio.  相似文献   

13.
Vacuoles release sucrose via tonoplast-localised SUC4-type transporters   总被引:1,自引:0,他引:1  
Arabidopsis thaliana has seven genes for functionally active sucrose transporters. Together with sucrose transporters from other dicot and monocot plants, these proteins form four separate phylogenetic groups. Group-IV includes the Arabidopsis protein SUC4 (synonym SUT4) and related proteins from monocots and dicots. These Group-IV sucrose transporters were reported to be either tonoplast- or plasma membrane-localised, and in heterologous expression systems were shown to act as sucrose/H(+) symporters. Here, we present comparative analyses of the subcellular localisation of the Arabidopsis SUC4 protein and of several other Group-IV sucrose transporters, studies on tissue specificity of the Arabidopsis SUC4 promoter, phenotypic characterisations of Atsuc4.1 mutants and AtSUC4 overexpressing (AtSUC4-OX) plants, and functional comparisons of Atsuc4.1 and AtSUC4-OX vacuoles. Our data show that SUC4-type sucrose transporters from different plant families (Brassicaceae, Cucurbitaceae and Solanaceae) localise exclusively to the tonoplast, demonstrating that vacuolar sucrose transport is a common theme of all SUC4-type proteins. AtSUC4 expression is confined to the stele of Arabidopsis roots, developing anthers and meristematic tissues in all aerial parts. Analyses of the carbohydrate content of WT and mutant seedlings revealed reduced sucrose content in AtSUC4-OX seedlings. This is in line with patch-clamp analyses of AtSUC4-OX vacuoles that characterise AtSUC4 as a sucrose/H(+) symporter directly in the tonoplast membrane.  相似文献   

14.
The ICK/KRP cyclin‐dependent kinase (CDK) inhibitors are important plant cell cycle factors sharing only limited similarity with the metazoan CIP/KIP family of CDK inhibitors. Little is known about the specific functions of different ICK/KRP genes in planta. In this study, we created double and multiple mutants from five single Arabidopsis ICK/KRP T‐DNA mutants, and used a set of 20 lines for the functional investigation of the important gene family. There were gradual increases in CDK activity from single to multiple mutants, indicating that ICK/KRPs act as CDK inhibitors under normal physiological conditions in plants. Whereas lower‐order mutants showed no morphological phenotypes, the ick1 ick2 ick6 ick7 and ick1 ick2 ick5 ick6 ick7 mutants had a slightly altered leaf shape. The quintuple mutant had larger cotyledons, leaves, petals and seeds than the wild‐type control. At the cellular level, the ICK/KRP mutants had more but smaller cells in all the organs examined. These phenotypic effects became more apparent as more ICK/KRPs were downregulated, suggesting that to a large extent ICK/KRPs function in plants redundantly in a dosage‐dependent manner. Analyses also revealed increased expression of E2F‐dependent genes, and elevated RBR1 as well as an increased level of phospho‐RBB1 protein in the quintuple mutant. Thus, downregulation of multiple ICK/KRP genes increases CDK activity, upregulates the E2F pathway and stimulates cell proliferation, resulting in increased cell numbers, and larger organs and seeds.  相似文献   

15.
16.
17.
Proton coupled transport of α-glucosides via Mal11 into Saccharomyces cerevisiae costs one ATP per imported molecule. Targeted mutation of all three acidic residues in the active site resulted in sugar uniport, but expression of these mutant transporters in yeast did not enable growth on sucrose. We then isolated six unique transporter variants of these mutants by directed evolution of yeast for growth on sucrose. In three variants, new acidic residues emerged near the active site that restored proton-coupled sucrose transport, whereas the other evolved transporters still catalysed sucrose uniport. The localization of mutations and transport properties of the mutants enabled us to propose a mechanistic model of proton-coupled sugar transport by Mal11. Cultivation of yeast strains expressing one of the sucrose uniporters in anaerobic, sucrose-limited chemostat cultures indicated an increase in the efficiency of sucrose dissimilation by 21% when additional changes in strain physiology were taken into account. We thus show that a combination of directed and evolutionary engineering results in more energy efficient sucrose transport, as a starting point to engineer yeast strains with increased yields for industrially relevant products.  相似文献   

18.
Abstract The comparative chromosomal locations of polymeric β-fructosidase SUC genes have been determined by Southern blot hybridization with the SUC2 probe in 91 different strains of Saccharomyces cerevisiae . Most of the strains exhibited a single SUC2 gene, but in some strains two or three SUC genes were found. All Suc strains carried a silent suc20 sequence. The accumulation of SUC genes was observed in populations derived from sources containing sucrose and seems to be absent in strains from sources promoting the MEL gene.  相似文献   

19.
A cDNA coding for a vitamin H (biotin) transport protein from Arabidopsis was identified by genetic complementation of a biotin uptake-deficient yeast mutant. Vitamin H transport by this protein was sensitive to the SH-group inhibitor p-chloromercuribenzene sulfonic acid (PCMBS) and to the uncoupler carbonyl cyanide-m-chlorophenylhydrazone (CCCP), suggesting an energy-dependent biotin-H+ symport mechanism. The transport activity could contribute to the so-far uncharacterized plant sucrose-H+ symporter AtSUC5 which mediates the energy-dependent transport of biotin and sucrose, and restores growth of the biotin transport-deficient yeast mutant on medium with low biotin concentrations. Functional comparison of the AtSUC5 transporter with previously characterized plant sucrose or monosaccharide transporters revealed that biotin transport may be a general and specific property of all plant sucrose transporters (sucrose/biotin-H+ symporters). This first report on a transporter with dual substrate specificity for two structurally unrelated molecules has a major impact on general thinking concerning the specificity of membrane transporters. The physiological relevance of this finding is discussed.  相似文献   

20.
Seed growth and accumulation of storage products relies on the delivery of sucrose from the maternal to the filial tissues. The transport route is hidden inside the seed and has never been visualized in vivo. Our approach, based on high‐field nuclear magnetic resonance and a custom made 13C/1H double resonant coil, allows the non‐invasive imaging and monitoring of sucrose allocation within the seed. The new technique visualizes the main stream of sucrose and determines its velocity during the grain filling in barley (Hordeum vulgare L.). Quantifiable dynamic images are provided, which allow observing movement of 13C‐sucrose at a sub‐millimetre level of resolution. The analysis of genetically modified barley grains (Jekyll transgenic lines, seg8 and Risø13 mutants) demonstrated that sucrose release via the nucellar projection towards the endosperm provides an essential mean for the control of seed growth by maternal organism. The sucrose allocation was further determined by structural and metabolic features of endosperm. Sucrose monitoring was integrated with an in silico flux balance analysis, representing a powerful platform for non‐invasive study of seed filling in crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号