首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dolichol plays an indispensable role in the N‐glycosylation of eukaryotic proteins. As proteins enter the secretory pathway they are decorated by a ‘glycan’, which is preassembled onto a membrane‐anchored dolichol molecule embedded within the endoplasmic reticulum (ER). Genetic and biochemical evidence in yeast and animals indicate that a cis‐prenyltransferase (CPT) is required for dolichol synthesis, but also point to other factor(s) that could be involved. In this study, RNAi‐mediated suppression of one member of the tomato CPT family (SlCPT3) resulted in a ~60% decrease in dolichol content. We further show that the involvement of SlCPT3 in dolichol biosynthesis requires the participation of a distantly related partner protein, designated as CPT‐binding protein (SlCPTBP), which is a close homolog of the human Nogo‐B receptor. Yeast two‐hybrid and co‐immunoprecipitation assays demonstrate that SlCPT3 and its partner protein interact in vivo and that both SlCPT3 and SlCPTBP are required to complement the growth defects and dolichol deficiency of the yeast dolichol mutant, rer2?. Co‐expression of SlCPT3 and SlCPTBP in yeast and in E. coli confirmed that dolichol synthase activity strictly requires both proteins. Finally, organelle isolation and in vivo localization of fluorescent protein fusions showed that both SlCPT3 and SlCPTBP localize to the ER, the site of dolichol accumulation and synthesis in eukaryotes.  相似文献   

2.
Recently it was shown that monoterpenes in tomato trichomes (Solanum lycopersicum) are synthesized by phellandrene synthase 1 (PHS1) from the non-canonical substrate neryl diphosphate (NPP), the cis-isomer of geranyl diphosphate (GPP). As PHS1 accepts both NPP and GPP substrates forming different monoterpenes, it was overexpressed in tomato fruits to test if NPP is also available in a tissue highly active in carotenoid production. However, transgenic fruits overexpressing PHS1 produced only small amounts of GPP-derived PHS1 monoterpene products, indicating the absence of endogenous NPP. Therefore, NPP formation was achieved by diverting the metabolic flux from carotenoids via expression of tomato neryl diphosphate synthase 1 (NDPS1). NDPS1 transgenic fruits produced NPP-derived monoterpenes, including nerol, neral and geranial, while displaying reduced lycopene content. NDPS1 co-expression with PHS1 resulted in a monoterpene blend, including β-phellandrene, similar to that produced from NPP by PHS1 in vitro and in trichomes. Unexpectedly, PHS1×NDPS1 fruits showed recovery of lycopene levels compared to NDPS1 fruits, suggesting that redirection of metabolic flux is only partially responsible for the reduction in carotenoids. In vitro assays demonstrated that NPP serves as an inhibitor of geranylgeranyl diphosphate synthase, thus its consumption by PHS1 leads to recovery of lycopene levels. Monoterpenes produced in PHS1×NDPS1 fruits contributed to direct plant defense negatively affecting feeding behavior of the herbivore Helicoverpa zea and displaying antifungal activity against Botrytis cinerea. These results show that NPP-derived terpenoids can be produced in plant tissues; however, NPP has to be consumed to avoid negative impacts on plant metabolism.  相似文献   

3.
We recently reported that three genes involved in the biosynthesis of monoterpenes in trichomes, a cis-prenyltransferase named neryl diphosphate synthase 1 (NDPS1) and two terpene synthases (TPS19 and TPS20), are present in close proximity to each other at the tip of chromosome 8 in the genome of the cultivated tomato (Solanum lycopersicum). This terpene gene “cluster” also contains a second cis-prenyltransferase gene (CPT2), three other TPS genes, including TPS21, and the cytochrome P450-oxidoreductase gene CYP71BN1. CPT2 encodes a neryneryl diphosphate synthase. Co-expression in E. coli of CPT2 and TPS21 led to the formation of the diterpene lycosantalene, and co-expression in E. coli of CPT2, TPS21 and CYP71BN1 led to the formation of lycosantalonol, an oxidation product of lycosantalene. Here we show that maximal expression of all three genes occurs in the petiolule part of the leaf, but little expression of these genes occurs in the trichomes present on the petiolules. While lycosantalene or lycosantalonol cannot be detected in the petiolules of wild-type plants (or anywhere else in the plant), lycosantalene and lycosantalonol are detected in petiolules of transgenic tomato plants expressing CPT2 under the control of the 35S CaMV promoter. These results suggest that lycosantalene and lycosantalonol are produced in the petiolules and perhaps in other tissues of wild-type plants, but that low rate of synthesis, controlled by the rate-limiting enzyme CPT2, results in product levels that are too low for detection under our current methodology. It is also possible that these compounds are further modified in the plant. The involvement of CPT2, TPS21 and CYP71BN1 in a diterpenoid biosynthetic pathway outside the trichomes, together with the involvement of other genes in the cluster in the synthesis of monoterpenes in trichomes, indicates that this cluster is further evolving into “sub-clusters” with unique biochemical, and likely physiological, roles.  相似文献   

4.
Geranyl diphosphate (GPP), the precursor of most monoterpenes, is synthesized in plastids from dimethylallyl diphosphate and isopentenyl diphosphate by GPP synthases (GPPSs). In heterodimeric GPPSs, a non‐catalytic small subunit (GPPS‐SSU) interacts with a catalytic large subunit, such as geranylgeranyl diphosphate synthase, and determines its product specificity. Here, snapdragon (Antirrhinum majus) GPPS‐SSU was over‐expressed in tomato fruits under the control of the fruit ripening‐specific polygalacturonase promoter to divert the metabolic flux from carotenoid formation towards GPP and monoterpene biosynthesis. Transgenic tomato fruits produced monoterpenes, including geraniol, geranial, neral, citronellol and citronellal, while exhibiting reduced carotenoid content. Co‐expression of the Ocimum basilicum geraniol synthase (GES) gene with snapdragon GPPS‐SSU led to a more than threefold increase in monoterpene formation in tomato fruits relative to the parental GES line, indicating that the produced GPP can be used by plastidic monoterpene synthases. Co‐expression of snapdragon GPPS‐SSU with the O. basilicum α–zingiberene synthase (ZIS) gene encoding a cytosolic terpene synthase that has been shown to possess both sesqui‐ and monoterpene synthase activities resulted in increased levels of ZIS‐derived monoterpene products compared to fruits expressing ZIS alone. These results suggest that re‐direction of the metabolic flux towards GPP in plastids also increases the cytosolic pool of GPP available for monoterpene synthesis in this compartment via GPP export from plastids.  相似文献   

5.
6.
7.
8.
9.
Tomato (Solanum lycopersicum) is one of the most important crops worldwide and is severely affected by geminiviruses. Tomato leaf curl Taiwan virus (ToLCTWV), belonging to the geminiviruses, was isolated in Taiwan and causes tremendous crop loss. The geminivirus‐encoded C2 proteins are crucial for a successful interaction between the virus and host plants. However, the exact functions of the viral C2 protein of ToLCTWV have not been investigated. We analyzed the molecular function(s) of the C2 protein by transient or stable expression in tomato cv. Micro‐Tom and Nicotiana benthamiana. Severe stunting of tomato and N. benthamiana plants infected with ToLCTWV was observed. Expression of ToLCTWV C2‐green fluorescent protein (GFP) fusion protein was predominately located in the nucleus and contributed to activation of a coat protein promoter. Notably, the C2‐GFP fluorescence was distributed in nuclear aggregates. Tomato and N. benthamiana plants inoculated with potato virus X (PVX)‐C2 displayed chlorotic lesions and stunted growth. PVX‐C2 elicited hypersensitive responses accompanied by production of reactive oxygen species in N. benthamiana plants, which suggests that the viral C2 was a potential recognition target to induce host‐defense responses. In tomato and N. benthamiana, ToLCTWV C2 was found to interfere with expression of genes encoding chromomethylases. N. benthamiana plants with suppressed NbCMT3–2 expression were more susceptible to ToLCTWV infection. Transgenic N. benthamiana plants expressing the C2 protein showed decreased expression of the NbCMT3–2 gene and pNbCMT3–2::GUS (β‐glucuronidase) promoter activity. C2 protein is an important pathogenicity determinant of ToLCTWV and interferes with host components involved in DNA methylation.  相似文献   

10.
Multiple alignments of primary structures of many kinds of prenyltransferases that participate in the most fundamental prenyl-chain backbone synthesizing process in isoprenoid biosynthesis showed seven conserved regions in the primary structures of (E)-prenyl diphosphate synthases. However, no information has been available about the structures of (Z)-prenyl diphosphate synthases until our recent isolation of the gene for the undecaprenyl diphosphate synthase of Micrococcus luteus B-P 26.

The amino acid sequence of the (Z)-prenyl diphosphate synthase is totally different from those of (E)-prenyl chain elongating enzymes. Protein data base searches for sequences similar to that of the undecaprenyl diphosphate synthase yielded many unknown proteins which have not yet been characterized. Two of the proteins have recently been identified as the undecaprenyl diphosphate synthase of Escherichia coli and the dehydrodolichyl diphosphate synthase of Saccharomyces cerevisiae, indicating that there are three highly conserved regions in the primary structure of (Z)-prenyl chain elongating enzymes.  相似文献   

11.
12.
In both yeast and mammals, the topoisomerase poison camptothecin (CPT) induces fork reversal, which has been proposed to stabilize replication forks, thus providing time for the repair of CPT‐induced lesions and supporting replication restart. We show that Tel1, the Saccharomyces cerevisiae orthologue of human ATM kinase, stabilizes CPT‐induced reversed forks by counteracting their nucleolytic degradation by the MRX complex. Tel1‐lacking cells are hypersensitive to CPT specifically and show less reversed forks in the presence of CPT. The lack of Mre11 nuclease activity restores wild‐type levels of reversed forks in CPT‐treated tel1Δ cells without affecting fork reversal in wild‐type cells. Moreover, Mrc1 inactivation prevents fork reversal in wild‐type, tel1Δ, and mre11 nuclease‐deficient cells and relieves the hypersensitivity of tel1Δ cells to CPT. Altogether, our data indicate that Tel1 counteracts Mre11 nucleolytic activity at replication forks that undergo Mrc1‐mediated reversal in the presence of CPT.  相似文献   

13.
In Arabidopsis, pre‐mRNAs of serine/arginine‐rich (SR) proteins undergo extensive alternative splicing (AS). However, little is known about the cis‐elements and trans‐acting proteins involved in regulating AS. Using a splicing reporter (GFP–intron–GFP), consisting of the GFP coding sequence interrupted by an alternatively spliced intron of SCL33, we investigated whether cis‐elements within this intron are sufficient for AS, and which SR proteins are necessary for regulated AS. Expression of the splicing reporter in protoplasts faithfully produced all splice variants from the intron, suggesting that cis‐elements required for AS reside within the intron. To determine which SR proteins are responsible for AS, the splicing pattern of the GFP–intron–GFP reporter was investigated in protoplasts of three single and three double mutants of SR genes. These analyses revealed that SCL33 and a closely related paralog, SCL30a, are functionally redundant in generating specific splice variants from this intron. Furthermore, SCL33 protein bound to a conserved sequence in this intron, indicating auto‐regulation of AS. Mutations in four GAAG repeats within the conserved region impaired generation of the same splice variants that are affected in the scl33 scl30a double mutant. In conclusion, we have identified the first intronic cis‐element involved in AS of a plant SR gene, and elucidated a mechanism for auto‐regulation of AS of this intron.  相似文献   

14.
Triterpenes are thirty‐carbon compounds derived from the universal five‐carbon prenyl precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Normally, triterpenes are synthesized via the mevalonate (MVA) pathway operating in the cytoplasm of eukaryotes where DMAPP is condensed with two IPPs to yield farnesyl diphosphate (FPP), catalyzed by FPP synthase (FPS). Squalene synthase (SQS) condenses two molecules of FPP to generate the symmetrical product squalene, the first committed precursor to sterols and most other triterpenes. In the green algae Botryococcus braunii, two FPP molecules can also be condensed in an asymmetric manner yielding the more highly branched triterpene, botryococcene. Botryococcene is an attractive molecule because of its potential as a biofuel and petrochemical feedstock. Because B. braunii, the only native host for botryococcene biosynthesis, is difficult to grow, there have been efforts to move botryococcene biosynthesis into organisms more amenable to large‐scale production. Here, we report the genetic engineering of the model monocot, Brachypodium distachyon, for botryococcene biosynthesis and accumulation. A subcellular targeting strategy was used, directing the enzymes (botryococcene synthase [BS] and FPS) to either the cytosol or the plastid. High titres of botryococcene (>1 mg/g FW in T0 mature plants) were obtained using the cytosolic‐targeting strategy. Plastid‐targeted BS + FPS lines accumulated botryococcene (albeit in lesser amounts than the cytosolic BS + FPS lines), but they showed a detrimental phenotype dependent on plastid‐targeted FPS, and could not proliferate and survive to set seed under phototrophic conditions. These results highlight intriguing differences in isoprenoid metabolism between dicots and monocots.  相似文献   

15.
Six new polyhydroxysteroidal glycosides, anthenosides S1  –  S6 ( 1  –  6 ), along with a mixture of two previously known related glycosides, 7 and 8 , were isolated from the methanolic extract of the starfish Anthenea sibogae. The structures of 1  –  6 were established by NMR and HR‐ESI‐MS techniques as well as by chemical transformations. All new compounds have a 5α‐cholest‐8(14)‐ene‐3α,6β,7β,16α‐tetrahydroxysteroidal nucleus and differ from majority of starfish glycosides in positions of carbohydrate moieties at C(7) and C(16) ( 1  –  4 , 6 ) or only at C(16) ( 5 ). The 4‐O‐methyl‐β‐d ‐glucopyranose residue ( 2 ) and Δ24‐cholestane side chain ( 3 ) have not been found earlier in the starfish steroidal glycosides. The mixture of 7 and 8 slightly inhibited the proliferation of human breast cancer T‐47D cells and decreased the colony size in the colony formation assay.  相似文献   

16.
17.
18.
ADAMTS1 (a disintegrin and metalloproteinase with thrombospondin motifs 1) is an early immediate gene. We have previously reported that ADAMTS1 was strongly induced by hypoxia. In this study, we investigated whether ADAMTS1 promoter‐driven reporter signal is detectable by acute hypoxia. We constructed the GFP (green fluorescent protein) expression vector [AHR (acute hypoxia‐response sequence)‐GFP] under the control of ADAMTS1 promoter and compared it with the constitutive GFP‐expressing vector under the control of CMV (cytomegalovirus promoter‐GFP). We transduced AHR‐GFP and examined whether GFP signals can be detected under the acute hypoxia. When the human umbilical vein [HUVEC (human umbilical vein endothelial cells)] was transduced under normoxia, there were few GFP signals, while CMV‐GFP showed considerable GFP signals. When HUVEC was stimulated with hypoxia, GFP signals from AHR‐GFP gene were induced under hypoxic conditions. Notably, the GFP signals peaked at 3 h under hypoxia. In ischaemic hind limb model, transduced AHR‐GFP showed hypoxic induction of GFP signals. In summary, we have demonstrated that the AHR system induced the reporter gene expression by acute hypoxia, and its induction is transient. This is the first report showing the unique acute hypoxia‐activated gene expression system.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号