首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Anatase TiO2 is an extensively studied anode material for lithium‐ion batteries because of its superior capability of storing Li+ electrochemically. Here reversible lithium storage of TiO2 is achieved chemically using redox targeting reactions. In the presence of a pair of redox mediators, bis(pentamethylcyclopentadienyl)cobalt (CoCp* 2) and cobaltocene (CoCp2) in an electrolyte, TiO2 and its lithiated form Li x TiO2 can be reduced and oxidized by CoCp* 2 and CoCp2 +, respectively, which accompany Li+ insertion and extraction, albeit without attaching the TiO2 onto the electrode. The reversible chemical lithiation/delithiation and the involved phase transitions are unambiguously confirmed using density functional theory (DFT) calculations, UV‐vis spectroscopy, X‐ray photoelectron spectoscopy (XPS), and Raman spectroscopy. A redox flow lithium‐ion battery (RFLB) half‐cell is assembled and evaluated, which is a critical step towards the development of RFLB full cells.  相似文献   

3.
4.
5.
6.
A highly stable phosphonate‐functionalized anthraquinone is introduced as the redox‐active material in a negative potential electrolyte (negolyte) for aqueous redox flow batteries operating at nearly neutral pH. The design and synthesis of 2,6‐DPPEAQ, (((9,10‐dioxo‐9,10‐dihydroanthracene‐2,6‐diyl)bis(oxy))bis(propane‐3,1‐diyl))bis(phosphonic acid), which has a high solubility at pH 9 and above, is described. Chemical stability studies demonstrate high stability at both pH 9 and 12. By pairing 2,6‐DPPEAQ with a potassium ferri/ferrocyanide positive electrolyte across an inexpensive, nonfluorinated permselective polymer membrane, this near‐neutral quinone flow battery exhibits an open‐circuit voltage of 1.0 V and a capacity fade rate of 0.00036% per cycle and 0.014% per day, which is the lowest ever reported for any flow battery in the absence of rebalancing processes. It is further demonstrated that the negolyte pH drifts upward upon atmospheric oxygen penetration but, when oxygen is excluded, oscillates reversibly between 9 and 12 during cycling. These results enhance the suitability of aqueous‐soluble redox‐active organics for use in large‐scale energy storage, potentially enabling massive penetration of intermittent renewable electricity.  相似文献   

7.
Increasing worldwide energy demands and rising CO2 emissions have motivated a search for new technologies to take advantage of renewables such as solar and wind energies. Redox flow batteries (RFBs) with their high power density, high energy efficiency, scalability (up to MW and MWh), and safety features are one suitable option for integrating such energy sources and overcoming their intermittency. However, resource limitation and high system costs of current RFB technologies impede wide implementation. Here, a total organic aqueous redox flow battery (OARFB) is reported, using low‐cost and sustainable methyl viologen (MV, anolyte) and 4‐hydroxy‐2,2,6,6‐tetramethylpiperidin‐1‐oxyl (4‐HO‐TEMPO, catholyte), and benign NaCl supporting electrolyte. The electrochemical properties of the organic redox active materials are studied using cyclic voltammetry and rotating disk electrode voltammetry. The MV/4‐HO‐TEMPO ARFB has an exceptionally high cell voltage, 1.25 V. Prototypes of the organic ARFB can be operated at high current densities ranging from 20 to 100 mA cm2, and deliver stable capacity for 100 cycles with nearly 100% Coulombic efficiency. The MV/4‐HO‐TEMPO ARFB displays attractive technical merits and thus represents a major advance in ARFBs.  相似文献   

8.
A new concept of multiple redox semi‐solid‐liquid (MRSSL) flow battery that takes advantage of active materials in both liquid and solid phases, is proposed and demonstrated. Liquid lithium iodide (LiI) electrolyte and solid sulfur/carbon (S/C) composite, forming LiI‐S/C MRSSL catholyte, are employed to demonstrate this concept. Record volumetric capacity (550 Ah L?1catholyte) is achieved using highly concentrated and synergistic multiple redox reactions of LiI and sulfur. The liquid LiI electrolyte is found to increase the reversible volumetric capacity of the catholyte, improve the electrochemical utilization of the S/C composite, and reduce the viscosity of catholyte. A continuous flow test is demonstrated and the influence of the flow rate on the flow battery performance is discussed. The MRSSL flow battery concept transforms inactive component into bi‐functional active species and creates synergistic interactions between multiple redox couples, offering a new direction and wide‐open opportunities to develop high‐energy‐density flow batteries.  相似文献   

9.
In recent years, the electrochemical power sources community has launched massive research programs, conferences, and workshops on the “post Li battery era.” However, in this report it is shown that the quest for post Li‐ion and Li battery technologies is incorrect in its essence. This is the outcome of a three day discussion on the future technologies that could provide an answer to a question that many ask these days: Which are the technologies that can be regarded as alternative to Li‐ion batteries? The answer to this question is a rather surprising one: Li‐ion battery technology will be here for many years to come, and therefore the use of “post Li‐ion” battery technologies would be misleading. However, there are applications with needs for which Li‐ion batteries will not be able to provide complete technological solutions, as well as lower cost and sustainability. In these specific cases, other battery technologies will play a key role. Here, the term “side‐by‐side technologies” is coined alongside a discussion of its meaning. The progress report does not cover the topic of Li‐metal battery technologies, but covers the technologies of sodium‐ion, multivalent, metal–air, and flow batteries.  相似文献   

10.
Redox‐active organometallic molecules offer a promising avenue for increasing the energy density and cycling stability of redox flow batteries. The molecular properties change dramatically as the ligands are functionalized and these variations allow for improving the solubility and controlling the redox potentials to optimize their performance when used as electrolytes. Unfortunately, it has been difficult to predict and design the stability of redox‐active molecules to enhance cyclability in a rational manner, in part because the relationship between electronic structure and redox behavior has been neither fully understood nor systematically explored. In this work, rational strategies for exploiting two common principles in organometallic chemistry for enhancing the robustness of pseudo‐octahedral cobalt–polypyridyl complexes are developed. Namely, the spin‐crossover between low and high‐spin states and the chelation effect emerging from replacing three bidentate ligands with two tridentate analogues. Quantum chemical models are used to conceptualize the approach and make predictions that are tested against experiments by preparing prototype Co‐complexes and profiling them as catholytes and anolytes. In good agreement with the conceptual predictions, very stable cycling performance over 600 cycles is found.  相似文献   

11.
The derivatives of 1,4‐dimethoxybenzene are thus far the best performing redox shuttle additives for overcharge protection of Li‐ion batteries. The most durable molecules of this kind typically possess two in‐plane methoxy groups that are equivalent by inversion symmetry. However, such geometry leads to a vanishing average dipole moment that causes poor solubility of these molecules in carbonate‐based electrolytes. In this study, a novel redox shuttle additive, 1,2,3,4‐tetrahydro‐6,7‐dimethoxy‐1,1,4,4‐tetramethyl‐naphthalene (TDTN), is introduced. It has been demonstrated that reversible oxidation at 4.05 V versus Li+/Li, high polarity, high solubility (around 0.4 m ), and excellent electrochemical stability (150 overcharge cycles at C/2 rate with 100% overcharge) can all be achieved simultaneously by the imposition of axial symmetry in the corresponding radical cation that is generated by electrochemical oxidation of TDTN in the battery. The intricate interplay between the symmetry and the chemical stability of the radical cation is scrutinized using magnetic resonance spectroscopy and electron structure modeling.  相似文献   

12.
A novel low‐cost nanoporous polytetrafluoroethylene (PTFE)/silica composite separator has been prepared and evaluated for its use in an all‐vanadium redox flow battery (VRB). The separator consists of silica particles enmeshed in a PTFE fibril matrix. It possesses unique nanoporous structures with an average pore size of 38 nm and a porosity of 48%. These pores function as the ion transport channels during redox flow battery operation. This separator provides excellent electrochemical performance in the mixed‐acid VRB system. The VRB using this separator delivers impressive energy efficiency, rate capability, and temperature tolerance. In additon, the flow cell using the novel separator also demonstrates an exceptional capacity retention capability over extended cycling, thus offering excellent stability for long‐term operation. The characteristics of low cost, excellent electrochemical performance and proven chemical stability afford the PTFE/silica nanoporous separator great potential as a substitute for the Nafion membrane used in VRB applications.  相似文献   

13.
14.
Quinones are appealing targets as organic charge carriers for aqueous redox flow batteries (RFBs), but their utility continues to be constrained by limited stability under operating conditions. The present study evaluates the stability of a series of water‐soluble quinones, with redox potentials ranging from 605–885 mV versus NHE, under acidic aqueous conditions (1 m H2SO4). Four of the quinones are examined as cathodic electrolytes in an aqueous RFB, paired with anthraquinone‐2,7‐disulfonate as the anodic electrolyte. The RFB data complement other solution stability tests and show that the most stable electrolyte is a tetrasubstituted quinone containing four sulfonated thioether substituents. The results highlight the importance of substituting all C–H positions of the quinone in order to maximize the quinone stability and set the stage for design of improved organic electrolytes for aqueous RFBs.  相似文献   

15.
Organic electrode materials hold great potential due to their cost‐efficiency, eco‐friendliness, and possibly high theoretical capacity. Nevertheless, most organic cathode materials exhibit a trade‐off relationship between the specific capacity and the voltage, failing to deliver high energy density. Herein, it is shown that the trade‐off can be mitigated by utilizing the multi‐redox capability of p‐type electrodes, which can significantly increase the specific capacity within a high‐voltage region. The molecular structure of 5,10‐dihydro‐5,10‐dimethylphenazine is modified to yield a series of phenoxazine and phenothiazine derivatives with elevated redox potentials by substitutions. Subsequently, the feasibility of the multi‐redox capability is scrutinized for these high‐voltage p‐type organic cathodes, achieving one of the highest energy densities. It is revealed that the seemingly impractical second redox reaction is indeed dependent on the choice of the electrolyte and can be reversibly realized by tailoring the donor number and the salt concentration of the electrolyte, which places the voltage of the multi‐redox reaction within the electrochemical stability window. The results demonstrate that high‐energy‐density organic cathodes can be practically achieved by rational design of multi‐redox p‐type organic electrode materials and the compatibility consideration of the electrolyte, opening up a new avenue toward advanced organic rechargeable batteries.  相似文献   

16.
Redox flow batteries have considerable advantages of system scalability and operation flexibility over other battery technologies, which makes them promising for large‐scale energy storage application. However, they suffer from low energy density and consequently relatively high cost for a nominal energy output. Redox targeting–based flow batteries are employed by incorporating solid energy storage materials in the tank and present energy density far beyond the solubility limit of the electrolytes. The success of this concept relies on paring suitable redox mediators with solid materials for facilitated reaction kinetics and lean electrolyte composition. Here, a redox targeting‐based flow battery system using the NASICON‐type Na3V2(PO4)3 as a capacity booster for both the catholyte and anolyte is reported. With 10‐methylphenothiazine as the cathodic redox mediator and 9‐fluorenone as anodic redox mediator, an all‐organic single molecule redox targeting–based flow battery is developed. The anodic and cathodic capacity are 3 and 17 times higher than the solubility limit of respective electrolyte, with which a full cell can achieve an energy density up to 88 Wh L?1. The reaction mechanism is scrutinized by operando and in‐situ X‐ray and UV–vis absorption spectroscopy. The reaction kinetics are analysed in terms of Butler–Volmer formalism.  相似文献   

17.
The all‐vanadium redox flow battery is a promising technology for large‐scale renewable and grid energy storage, but is limited by the low energy density and poor stability of the vanadium electrolyte solutions. A new vanadium redox flow battery with a significant improvement over the current technology is reported in this paper. This battery uses sulfate‐chloride mixed electrolytes, which are capable of dissolving 2.5 M vanadium, representing about a 70% increase in energy capacity over the current sulfate system. More importantly, the new electrolyte remains stable over a wide temperature range of ?5 to 50 °C, potentially eliminating the need for electrolyte temperature control in practical applications. This development would lead to a significant reduction in the cost of energy storage, thus accelerating its market penetration.  相似文献   

18.
19.
A cathode‐flow lithium‐iodine (Li–I) battery is proposed operating by the triiodide/iodide (I3?/I?) redox couple in aqueous solution. The aqueous Li–I battery has noticeably high energy density (≈0.28 kWh kg?1cell) because of the considerable solubility of LiI in aqueous solution (≈8.2 m ) and reasonably high power density (≈130 mW cm?2 at a current rate of 60 mA cm?2, 328 K). In the operation of cathode‐flow mode, the Li–I battery attains high storage capacity (≈90% of the theoretical capacity), Coulombic efficiency (100% ± 1% in 2–20 cycles) and cyclic performance (>99% capacity retention for 20 cycles) up to total capacity of 100 mAh.  相似文献   

20.
1,4‐Dimethoxybenzene derivatives are materials of choice for use as catholytes in non‐aqueous redox flow batteries, as they exhibit high open‐circuit potentials and excellent electrochemical reversibility. However, chemical stability of these materials in their oxidized form needs to be improved. Disubstitution in the arene ring is used to suppress parasitic reactions of their radical cations, but this does not fully prevent ring‐addition reactions. By incorporating bicyclic substitutions and ether chains into the dialkoxybenzenes, a novel catholyte molecule, 9,10‐bis(2‐methoxyethoxy)‐1,2,3,4,5,6,7,8‐octahydro‐1,4:5,8‐dimethanenoanthracene (BODMA), is obtained and exhibits greater solubility and superior chemical stability in the charged state. A hybrid flow cell containing BODMA is operated for 150 charge–discharge cycles with a minimal loss of capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号