首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although mechanical isolation mediated by shared pollinators has been considered as a classic model of pollinator-mediated floral isolation in Pedicularis, a superdiverse genus in Hengduan Mountains, southwest China, there has been no empirical study of interspecific pollen flow between closely related species. We examined reproductive barriers at six different stages between Pedicularis cranolopha and Pedicularis tricolor, two sister species. The two sister species were geographically isolated from each other based on our field survey and the records of herbarium specimens. Translocation experiments showed that flowering phenology partly overlapped and bumblebee pollinators did not discriminate between flowers of the two species. Bumblebee interspecific moves could mediate interspecific pollination as traced using fluorescent powder, in which pollen analogs placed on one species were transferred to the stigmas of the other species in experimental plots containing both species. Heterospecific pollen tubes grew in the style as well as conspecific pollen in hand-pollination experiments. Reciprocal hybridization between the two species could produce (partially) viable seeds, suggesting weak post-pollination barriers. Our results showed that geographic isolation was an important barrier of two species, and the total reproductive isolation between two species was incomplete when without geographical isolation. The formation of Big Snow Mountains could introduce an important pre-zygotic reproductive barrier between the two sister species of Pedicularis; such geographical isolation could be responsible for allopatric speciation, giving a clue to understanding the rapid radiation on mountain areas.  相似文献   

2.
Outbreeding confers an evolutionary advantage, and flowering plants have evolved a variety of contrivances for its maximization. However, neither fruit set nor seed set is realized to its fullest potential for a variety of reasons. The causes of low flower to fruit and seed to ovule ratios were investigated in naturally occurring bael trees (Aegle marmelos) at two sites for three seasons. The study established that the mass effect of synchronized flowering attracted a variety of insect pollinators to the generalist flowers; Apis dorsata was the most efficient pollinator. The seed to ovule ratio was low despite high natural pollination efficiency (c. 2400 pollen per stigma). Although pollination‐induced structural and histochemical changes in the style allowed many (9.5 ± 2.1) pollen tubes to grow, only cross‐pollen tubes could grow through the style. Gametophytic self‐incompatibility, manifested in the stylar zone, resulted in a significantly slower growth rate of self‐pollen tubes. The occurrence of obligate self‐incompatibility, coupled with increased self‐pollen deposition (geitonogamy), caused a significant number of flowers to abort. Fruit retention in the trees declined from 40% to 12% as a result of abortion of fruits at different stages of development. The number of mature fruits on a tree was negatively correlated (r = ?0.82) with their size. It is inferred that low natural fecundity in A. marmelos is primarily a result of obligate self‐incompatibility and strong post‐fertilization maternal regulation of allocation of resources to the developing fruits. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 172 , 572–585.  相似文献   

3.
Recognition of endogenous molecules acting as ‘damage‐associated molecular patterns’ (DAMPs) is a key feature of immunity in both animals and plants. Oligogalacturonides (OGs), i.e. fragments derived from the hydrolysis of homogalacturonan, a major component of pectin are a well known class of DAMPs that activate immunity and protect plants against several microbes. However, hyper‐accumulation of OGs severely affects growth, eventually leading to cell death and clearly pointing to OGs as players in the growth‐defence trade‐off. Here we report a mechanism that may control the homeostasis of OGs avoiding their deleterious hyper‐accumulation. By combining affinity chromatography on acrylamide‐trapped OGs and other procedures, an Arabidopsis thaliana enzyme that specifically oxidizes OGs was purified and identified. The enzyme was named OG OXIDASE 1 (OGOX1) and shown to be encoded by the gene At4g20830. As a typical flavo‐protein, OGOX1 is a sulphite‐sensitive H2O2‐producing enzyme that displays maximal activity on OGs with a degree of polymerization >4. OGOX1 belongs to a large gene family of mainly apoplastic putative FAD‐binding proteins [Berberine Bridge Enzyme‐like (BBE‐like); 27 members], whose biochemical and biological function is largely unexplored. We have found that at least four BBE‐like enzymes in Arabidopsis are OG oxidases (OGOX1–4). Oxidized OGs display a reduced capability of activating the immune responses and are less hydrolysable by fungal polygalacturonases. Plants overexpressing OGOX1 are more resistant to Botrytis cinerea, pointing to a crucial role of OGOX enzymes in plant immunity.  相似文献   

4.
The self‐incompatibility (SI) response occurs widely in flowering plants as a means of preventing self‐fertilization. In these self/non‐self discrimination systems, plant pistils reject self or genetically related pollen. In the Solanaceae, Plantaginaceae and Rosaceae, pistil‐secreted S‐RNases enter the pollen tube and function as cytotoxins to specifically arrest self‐pollen tube growth. Recent studies have revealed that the S‐locus F‐box (SLF) protein controls the pollen expression of SI in these families. However, the precise role of SLF remains largely unknown. Here we report that PhSSK1 (Petunia hybrida SLF‐interacting Skp1‐like1), an equivalent of AhSSK1 of Antirrhinum hispanicum, is expressed specifically in pollen and acts as an adaptor in an SCF(Skp1‐Cullin1‐F‐box)SLF complex, indicating that this pollen‐specific SSK1‐SLF interaction occurs in both Petunia and Antirrhinum, two species from the Solanaceae and Plantaginaceae, respectively. Substantial reduction of PhSSK1 in pollen reduced cross‐pollen compatibility (CPC) in the S‐RNase‐based SI response, suggesting that the pollen S determinant contributes to inhibiting rather than protecting the S‐RNase activity, at least in solanaceous plants. Furthermore, our results provide an example that a specific Skp1‐like protein other than the known conserved ones can be recruited into a canonical SCF complex as an adaptor.  相似文献   

5.
6.
Assortative mating is of interest because of its role in speciation and the maintenance of species boundaries. However, we know little about how within‐species assortment is related to interspecific sexual isolation. Most previous studies of assortative mating have focused on a single trait in males and females, rather than utilizing multivariate trait information. Here, we investigate how intraspecific assortative mating relates to sexual isolation in two sympatric and congeneric damselfly species (genus Calopteryx). We connect intraspecific assortment to interspecific sexual isolation by combining field observations, mate preference experiments, and enforced copulation experiments. Using canonical correlation analysis, we demonstrate multivariate intraspecific assortment for body size and body shape. Males of the smaller species mate more frequently with heterospecific females than males of the larger species, which showed less attraction to small heterospecific females. Field experiments suggest that sexual isolation asymmetry is caused by male preferences for large heterospecific females, rather than by mechanical isolation due to interspecific size differences or female preferences for large males. Male preferences for large females and male–male competition for high quality females can therefore counteract sexual isolation. This sexual isolation asymmetry indicates that sexual selection currently opposes a species boundary.  相似文献   

7.
  • Pedicularis is the largest genus in the Orobanchaceae (>300) with many species co‐occurring and co‐blooming in subalpine to alpine meadows in the Himalayas. Although it is well known that different Pedicularis species place pollen on different parts of the same bumblebee's body, thus reducing interspecific pollen transfer, it is not known whether post‐pollination components also contribute to reproductive isolation (RI).
  • In this study, we quantified the individual strengths and absolute contributions of six pre‐ and post‐pollination components of RI between three sympatric species in two pairs; Pedicularis gruina × Pedicularis tenuisecta (gru × ten) and Pedicularis comptoniifolia × Pedicularis tenuisecta (com × ten).
  • All three Pedicularis species shared the same Bombus species. Individual foragers showed a high, but incomplete, floral constancy for each species. Therefore, pre‐pollination barriers were potentially ‘leaky’ as Bombus species showed a low but consistent frequency of interspecific visitation. The RI strength of pre‐pollination was lower in com × ten than in gru × ten. In contrast, post‐pollination barriers completely blocked gene flow between both sets of species pairs. Two post‐pollination recognition sites were identified. Late acting rejection of interspecific pollen tube growth occurred in com♀ × ten♂, while seeds produced in bi‐directional crosses of gru × ten failed to germinate.
  • We propose that, although floral isolation based on pollen placement on pollinators in the genus Pedicularis is crucial to avoid interspecific pollen transfer, the importance of this mode of interspecific isolation may be exaggerated. Post‐pollination barriers may play even larger roles for currently established populations of co‐blooming and sympatric species in this huge genus in the Himalayas.
  相似文献   

8.
Transitions from self‐incompatibility to self‐compatibility in angiosperms may be frequently driven by selection for reproductive assurance when mates or pollinators are rare, and are often succeeded by loss of inbreeding depression by purging. Here, we use experimental evolution to investigate the spread of self‐compatibility from one such population of the perennial plant Linaria cavanillesii into self‐incompatible (SI) populations that still have high inbreeding depression. We introduced self‐compatible (SC) individuals at different frequencies into replicate experimental populations of L. cavanillesii that varied in access to pollinators. Our experiment revealed a rapid shift to self‐compatibility in all replicates, driven by both greater seed set and greater outcross siring success of SC individuals. We discuss our results in the light of computer simulations that confirm the tendency of self‐compatibility to spread into SI populations under the observed conditions. Our study illustrates the ease with which self‐compatibility can spread among populations, a requisite for species‐wide transitions from self‐incompatibility to self‐compatibility.  相似文献   

9.
Self‐incompatibility (SI) is a self/non‐self discrimination system found widely in angiosperms and, in many species, is controlled by a single polymorphic S‐locus. In the Solanaceae, Rosaceae and Plantaginaceae, the S‐locus encodes a single S‐RNase and a cluster of S‐locus F‐box (SLF) proteins to control the pistil and pollen expression of SI, respectively. Previous studies have shown that their cytosolic interactions determine their recognition specificity, but the physical force between their interactions remains unclear. In this study, we show that the electrostatic potentials of SLF contribute to the pollen S specificity through a physical mechanism of ‘like charges repel and unlike charges attract’ between SLFs and S‐RNases in Petunia hybrida. Strikingly, the alteration of a single C‐terminal amino acid of SLF reversed its surface electrostatic potentials and subsequently the pollen S specificity. Collectively, our results reveal that the electrostatic potentials act as a major physical force between cytosolic SLFs and S‐RNases, providing a mechanistic insight into the self/non‐self discrimination between cytosolic proteins in angiosperms.  相似文献   

10.
Direct development in amphibians is characterized by the loss of aquatic breeding. The anuran Adelophryne maranguapensis is one example of a species with direct development, and it is endemic to the state of Ceará, Brazil. Detailed morphological features of A. maranguapensis embryos and the stages of sequential development have not been described before. Here, we analyzed all available genetic sequence tags in A. maranguapensis (tyr exon 1, pomc and rag1) and compared them with sequences from other species of Adelophryne frogs. We describe the A. maranguapensis reproductive tract and embryonic body development, with a focus on the limbs, tail, ciliated cells of the skin, and the egg tooth, which were analyzed using scanning electron microscopy. Histological analyses revealed ovaries containing oocytes surrounded by follicular cells, displaying large nuclei with nucleoli inside. Early in development, the body is unpigmented, and the neural tube forms dorsally to the yolk vesicle, typical of a direct‐developing frog embryo. The hindlimbs develop earlier than the forelimbs. Ciliated cells are abundant during the early stages of skin development and are less common during later stages. The egg tooth appears in the later stages and develops as a keratinized microridge structure. The developmental profile of A. maranguapensis presented here will contribute to our understanding of the direct‐development model and may help preserve this endangered native Brazilian frog. genesis 54:257–271, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

11.
Ovarian self‐incompatibility, including pre‐ and post‐zygotic reactions, is a complex mechanism for which we still lack many details relating to its function and significance. The joint presence of ovarian self‐incompatibility with style polymorphism is a rare combination that is found in the genus Narcissus. Usually, style polymorphic species have heteromorphic (diallelic and linked to style length locus) incompatibility, which prevents fertilization between individuals of the same morph, thereby helping to maintain equal proportions of floral morphs in populations. However, when present, self‐incompatibility in Narcissus is not linked to style polymorphism and cross‐fertilization within each morph is possible. Hence, self‐incompatibility in Narcissus is of particular interest when attempting to unravel the nature of the rejection reaction and aiming to assess possible cryptic differences in the fertilization process in intra‐ and inter‐morph crosses, which might ultimately explain the wide variation of morph‐ratio in the field. We examined the breeding system of Narcissus papyraceus, a style‐dimorphic species that has biased morph ratios in most of its populations. We studied pollen‐tube growth in the pistil and ovule fate after experimentally controlled hand pollinations. The growth of pollen tubes in self‐ and intra‐ and inter‐morph crosses was similar up to the point of micropyle penetration in both morphs but, subsequently, a pre‐zygotic failure appeared to affect male and female gametophytes in selfed pistils. A high proportion of ovules from self‐pollinated flowers showed signs of collapse and self‐pollen tubes were blocked or behaved abnormally before entering the embryo sac. Self‐incompatibility was stronger in the long‐styled morph than in the short‐styled morph. We did not find any conclusive sign of differential functioning between intra‐ and inter‐morph cross‐pollinations in any morph. These results enable us to rule out the possible effects of pollen–pistil interactions in N. papyraceus as a cause of morph‐ratio biases and confirm the exceptional nature of the self‐incompatibility mechanism in this polymorphic species. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 629–643.  相似文献   

12.
Previous studies have shown that Nicotiana tabacum contains three Agrobacterium‐derived T‐DNA sequences inherited from its paternal ancestor Nicotiana tomentosiformis. Among these, the TB locus carries an intact mannopine synthase 2′ gene (TB‐mas2′). This gene is similar to the Agrobacterium rhizogenes A4‐mas2′ gene that encodes the synthesis of the Amadori compound deoxyfructosyl‐glutamine (DFG or santhopine). In this study we show that TB‐mas2′ is expressed at very low levels in N. tomentosiformis and in most N. tabacum cultivars; however, some cultivars show high TB‐mas2′ expression levels. The TB‐mas2′ promoter sequences of low‐ and high‐expressing cultivars are identical. The low/high level of expression segregates as a single Mendelian factor in a cross between a low‐ and a high‐expression cultivar. pTB‐mas2‐GUS and pA4‐mas2‐GUS reporter genes were stably introduced in N. benthamiana. Both were mainly expressed in the root expansion zone and leaf vasculature. Roots of tobacco cultivars with high TB‐mas2′ expression contain detectable levels of DFG.  相似文献   

13.
Abstract 1. As herbivory often elicits systemic changes in plant traits, indirect interactions via induced plant responses may be a pervasive feature structuring herbivore communities. Although the importance of this phenomenon has been emphasised for herbivorous insects, it is unknown if and how induced responses contribute to the organisation of other major phytoparasitic taxa. 2. Survey and experimental field studies were used to investigate the role of plants in linking the dynamics of foliar‐feeding insects and root‐feeding nematodes on tobacco, Nicotiana tabacum. 3. Plant‐mediated interactions between insects and nematodes could largely be differentiated by insect feeding guild, with positive insect–nematode interactions predominating with leaf‐chewing insects (caterpillars) and negative interactions occurring with sap‐feeding insects (aphids). For example, insect defoliation was positively correlated with the abundance of root‐feeding nematodes, but aphids and nematodes were negatively correlated. Experimental field manipulations of foliar insect and nematode root herbivory also tended to support this outcome. 4. Overall, these results suggest that plants indirectly link the dynamics of divergent consumer taxa in spatially distinct ecosystems. This lends support to the growing perception that plants play a critical role in propagating indirect effects among a diverse assemblage of consumers.  相似文献   

14.
15.
16.
Late‐acting (ovarian) self‐incompatibility, characterized by minimal or zero seed production following self‐pollen tube growth to the ovules, is expected to show phylogenetic clustering, but can otherwise be difficult to distinguish from early‐acting inbreeding depression. In Amaryllidaceae, late‐acting self‐incompatibility has been proposed for Narcissus (Narcisseae) and Cyrtanthus (Cyrtantheae). Here, we investigate whether it occurs in the horticulturally important genus Clivia (Haemantheae) and test whether species in this genus experience ovule discounting in wild populations. Seed‐set results following controlled hand pollinations revealed that Clivia miniata and C. gardenii are largely self‐sterile. Self‐ and cross‐pollinated flowers of both species had similar proportions of pollen tubes entering the ovary, and those of C. gardenii also did not differ in the proportions of pollen tubes that penetrated ovules, thus ruling out classical gametophytic self‐incompatibility acting in the style, but not early inbreeding depression. Flowers that received equal mixtures of self‐ and cross‐pollen set fewer seeds than those that received cross‐pollen only, but it was unclear whether this effect was a result of ovule discounting or interactions on the stigma. The prevention of self‐pollination by the emasculation of either single flowers or whole inflorescences in wild populations did not affect seed set, suggesting that ovule discounting is not a major natural limitation on seed production. Flowers typically produce one to three large fleshy seeds from approximately 16 available ovules, even when supplementally hand pollinated, suggesting that fecundity is mostly resource limited. The results of this study suggest that Clivia spp. are largely self‐sterile as a result of either a late‐acting self‐incompatibility system or severe early inbreeding depression, but ovule discounting caused by self‐pollination is not a major constraint on fecundity. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 155–168.  相似文献   

17.
Vas deferens is a conduit for sperm and fluid from the epididymis to the urethra. The duct is surrounded by a thick smooth muscle layer. To map the actin cytoskeleton of the duct and its epithelium, we reacted sections of the proximal and distal regions with fluorescent phalloidin. Confocal microscopic imaging showed that the cylinder‐shaped epithelium of the proximal region has a thick apical border of actin filaments that form microvilli. The epithelium of the distal region is covered with tall stereocilia (13–18 µm) that extend from the apical border into the lumen. In both regions, the lateral and basal cell borders showed a thin lining of actin cytoskeleton. The vas deferens epithelium contains various channels to regulate the fluid composition in the lumen. We mapped the localization of the epithelial sodium channel (ENaC), aquaporin‐9 (AQP9), and cystic fibrosis transmembrane conductance regulator (CFTR) in the rat and mouse vas deferens. ENaC and AQP9 immunofluorescence were localized on the luminal surface and stereocilia and also in the basal and smooth muscle layers. CFTR immunofluorescence appeared only on the luminal surface and in smooth muscle layers. The localization of all three channels on the apical surface of the columnar epithelial cells provides clear evidence that these channels are involved concurrently in the regulation of fluid and electrolyte balance in the lumen of the vas deferens. ENaC allows the flow of Na+ ions from the lumen into the cytoplasm, and the osmotic gradient generated provides the driving force for the passive flow of water through AQP channels.  相似文献   

18.
19.
The pollination biology of the nectarless orchid Pogonia minor was investigated in central Japan. The investigation revealed that the solitary flowers failed to attract pollinators, while high rates of fruit set were observed in the natural population. Comparable levels of fruit set were obtained in bagged, artificial self‐pollinated and artificial cross‐pollinated plants, indicating that the species is not pollinator‐limited for fruit set under natural conditions. Autonomous self‐pollination in P. minor resulted from a reduced rostellum, which allowed contact between the pollinia and the stigma. Self‐pollination is thought to be an adaptive response that provides reproductive assurance under conditions of pollinator limitation. Since pollen limitation is generally known to be frequent among deceptive orchids, strong pollen limitation is probably a driving force in the autonomous self‐pollination mechanism in the nectarless orchid P. minor.  相似文献   

20.
We investigated whether the equilibrium theory of island biogeography (ETIB) can be applied to the meiofauna of groundwater‐fed springs. We tested whether copepod species richness was related with spring area, discharge, and elevation. Additionally, five hypotheses are tested based on species distribution patterns, dispersal ability, and life‐history characteristics of several guilds (stygobiotic, nonstygobiotic, cold stenotherm, and noncold stenotherm species). Thirty springs in the central Apennines (Italy) were considered. A multimodel selection procedure was applied to select best‐fit models using both ordinary least‐squares regressions and autoregressive models. Mantel tests were used to investigate the impact of spatial autocorrelation in determining interspring similarity (ßsor), pure turnover (ßsim), intersite nestedness (ßnest = ßsor ? ßsim), and matrix nestedness (measured using NODF and other metrics). Explicit consideration of spatial correlations reduced the importance of predictors of overall species richness, noncold stenotherm species (both negatively affected by elevation), cold stenotherm species, and nonstygobiotic species, but increased the importance of area for the stygobiotic species. We detected nested patterns in all cases, except for the stygobites. Interspring distances were positively correlated with ßsor and ßnest (but not with ßsim) for the entire data set and for nonstygobiotic, cold stenotherm, and noncold stenotherm species. In the case of stygobites, interspring geographical distances were marginally correlated with ßsor and no correlation was found for ßsim and ßnest. We found support for ETIB predictions about species richness, which was positively influenced by area and negatively by elevation (which expresses the size of source of immigrants). Low turnover and high nestedness are consistent with an equilibrium scenario mainly regulated by immigration and extinction. Stygobites, which include many distributional and evolutionary relicts, have a low capability to disperse through the aquifers and tend to be mainly confined to the springs where they drifted out and were trapped by springbed sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号