共查询到20条相似文献,搜索用时 0 毫秒
1.
The ANGULATA7 gene encodes a DnaJ‐like zinc finger‐domain protein involved in chloroplast function and leaf development in Arabidopsis 下载免费PDF全文
Tamara Muñoz‐Nortes José Manuel Pérez‐Pérez María Rosa Ponce Héctor Candela José Luis Micol 《The Plant journal : for cell and molecular biology》2017,89(5):870-884
The characterization of mutants with altered leaf shape and pigmentation has previously allowed the identification of nuclear genes that encode plastid‐localized proteins that perform essential functions in leaf growth and development. A large‐scale screen previously allowed us to isolate ethyl methanesulfonate‐induced mutants with small rosettes and pale green leaves with prominent marginal teeth, which were assigned to a phenotypic class that we dubbed Angulata. The molecular characterization of the 12 genes assigned to this phenotypic class should help us to advance our understanding of the still poorly understood relationship between chloroplast biogenesis and leaf morphogenesis. In this article, we report the phenotypic and molecular characterization of the angulata7‐1 (anu7‐1) mutant of Arabidopsis thaliana, which we found to be a hypomorphic allele of the EMB2737 gene, which was previously known only for its embryonic‐lethal mutations. ANU7 encodes a plant‐specific protein that contains a domain similar to the central cysteine‐rich domain of DnaJ proteins. The observed genetic interaction of anu7‐1 with a loss‐of‐function allele of GENOMES UNCOUPLED1 suggests that the anu7‐1 mutation triggers a retrograde signal that leads to changes in the expression of many genes that normally function in the chloroplasts. Many such genes are expressed at higher levels in anu7‐1 rosettes, with a significant overrepresentation of those required for the expression of plastid genome genes. Like in other mutants with altered expression of plastid‐encoded genes, we found that anu7‐1 exhibits defects in the arrangement of thylakoidal membranes, which appear locally unappressed. 相似文献
2.
Stijn Dhondt Nathalie Gonzalez Jonas Blomme Liesbeth De Milde Twiggy Van Daele Dirk Van Akoleyen Veronique Storme Frederik Coppens Gerrit T.S. Beemster Dirk Inzé 《The Plant journal : for cell and molecular biology》2014,80(1):172-184
Although quantitative characterization of growth phenotypes is of key importance for the understanding of essential networks driving plant growth, the majority of growth‐related genes are still being identified based on qualitative visual observations and/or single‐endpoint quantitative measurements. We developed an in vitro growth imaging system (IGIS) to perform time‐resolved analysis of rosette growth. In this system, Arabidopsis plants are grown in Petri dishes mounted on a rotating disk, and images of each plate are taken on an hourly basis. Automated image analysis was developed in order to obtain several growth‐related parameters, such as projected rosette area, rosette relative growth rate, compactness and stockiness, over time. To illustrate the use of the platform and the resulting data, we present the results for the growth response of Col–0 plants subjected to three mild stress conditions. Although the reduction in rosette area was relatively similar at 19 days after stratification, the time‐lapse analysis demonstrated that plants react differently to salt, osmotic and oxidative stress. The rosette area was altered at various time points during development, and leaf movement and shape parameters were also affected differently. We also used the IGIS to analyze in detail the growth behavior of mutants with enhanced leaf size. Analysis of several growth‐related parameters over time in these mutants revealed several specificities in growth behavior, underlining the high complexity of leaf growth coordination. These results demonstrate that time‐resolved imaging of in vitro rosette growth generates a better understanding of growth phenotypes than endpoint measurements. 相似文献
3.
The anaphase‐promoting complex initiates zygote division in Arabidopsis through degradation of cyclin B1 下载免费PDF全文
Ying Zhang Xiu‐Li Lu Qi Xie Dolf Weijers Chun‐Ming Liu 《The Plant journal : for cell and molecular biology》2016,86(2):161-174
As the start of a new life cycle, activation of the first division of the zygote is a critical event in both plants and animals. Because the zygote in plants is difficult to access, our understanding of how this process is achieved remains poor. Here we report genetic and cell biological analyses of the zygote‐arrest 1 (zyg1) mutant in Arabidopsis, which showed zygote‐lethal and over‐accumulation of cyclin B1 D‐box‐GUS in ovules. Map‐based cloning showed that ZYG1 encodes the anaphase‐promoting complex/cyclosome (APC/C) subunit 11 (APC11). Live‐cell imaging studies showed that APC11 is expressed in both egg and sperm cells, in zygotes and during early embryogenesis. Using a GFP‐APC11 fusion construct that fully complements zyg1, we showed that GFP‐APC11 expression persisted throughout the mitotic cell cycle, and localized to cell plates during cytokinesis. Expression of non‐degradable cyclin B1 in the zygote, or mutations of either APC1 or APC4, also led to a zyg1‐like phenotype. Biochemical studies showed that APC11 has self‐ubiquitination activity and is able to ubiquitinate cyclin B1 and promote degradation of cyclin B1. These results together suggest that APC/C‐mediated degradation of cyclin B1 in Arabidopsis is critical for initiating the first division of the zygote. 相似文献
4.
Masakazu Iwai Melissa S. Roth Krishna K. Niyogi 《The Plant journal : for cell and molecular biology》2018,96(1):233-243
The chloroplast is the chlorophyll‐containing organelle that produces energy through photosynthesis. Within the chloroplast is an intricate network of thylakoid membranes containing photosynthetic membrane proteins that mediate electron transport and generate chemical energy. Historically, electron microscopy (EM) has been a powerful tool for visualizing the macromolecular structure and organization of thylakoid membranes. However, an understanding of thylakoid membrane dynamics remains elusive because EM requires fixation and sectioning. To improve our knowledge of thylakoid membrane dynamics we need to consider at least two issues: (i) the live‐cell imaging conditions needed to visualize active processes in vivo; and (ii) the spatial resolution required to differentiate the characteristics of thylakoid membranes. Here, we utilize three‐dimensional structured illumination microscopy (3D‐SIM) to explore the optimal imaging conditions for investigating the dynamics of thylakoid membranes in living plant and algal cells. We show that 3D‐SIM is capable of examining broad characteristics of thylakoid structures in chloroplasts of the vascular plant Arabidopsis thaliana and distinguishing the structural differences between wild‐type and mutant strains. Using 3D‐SIM, we also visualize thylakoid organization in whole cells of the green alga Chlamydomonas reinhardtii. These data reveal that high light intensity changes thylakoid membrane structure in C. reinhardtii. Moreover, we observed the green alga Chromochloris zofingiensis and the moss Physcomitrella patens to show the applicability of 3D‐SIM. This study demonstrates that 3D‐SIM is a promising approach for studying the dynamics of thylakoid membranes in photoautotrophic organisms during photoacclimation processes. 相似文献
5.
Najia Zaman Kati Seitz Mohiuddin Kabir Lauren St. George‐Schreder Ian Shepstone Yidong Liu Shuqun Zhang Patrick J. Krysan 《The Plant journal : for cell and molecular biology》2019,97(5):970-983
The catalytic activity of mitogen‐activated protein kinases (MAPKs) is dynamically modified in plants. Since MAPKs have been shown to play important roles in a wide range of signaling pathways, the ability to monitor MAPK activity in living plant cells would be valuable. Here, we report the development of a genetically encoded MAPK activity sensor for use in Arabidopsis thaliana. The sensor is composed of yellow and blue fluorescent proteins, a phosphopeptide binding domain, a MAPK substrate domain and a flexible linker. Using in vitro testing, we demonstrated that phosphorylation causes an increase in the Förster resonance energy transfer (FRET) efficiency of the sensor. The FRET efficiency can therefore serve as a readout of kinase activity. We also produced transgenic Arabidopsis lines expressing this sensor of MAPK activity (SOMA) and performed live‐cell imaging experiments using detached cotyledons. Treatment with NaCl, the synthetic flagellin peptide flg22 and chitin all led to rapid gains in FRET efficiency. Control lines expressing a version of SOMA in which the phosphosite was mutated to an alanine did not show any substantial changes in FRET. We also expressed the sensor in a conditional loss‐of‐function double‐mutant line for the Arabidopsis MAPK genes MPK3 and MPK6. These experiments demonstrated that MPK3/6 are necessary for the NaCl‐induced FRET gain of the sensor, while other MAPKs are probably contributing to the chitin and flg22‐induced increases in FRET. Taken together, our results suggest that SOMA is able to dynamically report MAPK activity in living plant cells. 相似文献
6.
Poyu Chen Caroline A. Sjogren Paul B. Larsen Arp Schnittger 《The Plant journal : for cell and molecular biology》2019,98(3):479-491
Aluminium (Al) ions are one of the primary growth‐limiting factors for plants on acid soils, globally restricting agriculture. Despite its impact, little is known about Al action in planta. Earlier work has indicated that, among other effects, Al induces DNA damage. However, the loss of major DNA damage response regulators, such SOG1, partially suppressed the growth reduction in plants seen on Al‐containing media. This raised the question whether Al actually causes DNA damage and, if so, how. Here, we provide cytological and genetic data corroborating that exposure to Al leads to DNA double‐strand breaks. We find that the Al‐induced damage specifically involves homology‐dependent (HR) recombination repair. Using an Al toxicity assay that delivers higher Al concentrations than used in previous tests, we find that sog1 mutants become highly sensitive to Al. This indicates a multi‐level response to Al‐induced DNA damage in plants. 相似文献
7.
Qin Li Xianzong Shi Shengjian Ye Sheng Wang Ron Chan Troy Harkness Hong Wang 《The Plant journal : for cell and molecular biology》2016,87(6):617-628
The ICK/KRP family of cyclin‐dependent kinase (CDK) inhibitors modulates the activity of plant CDKs through protein binding. Previous work has shown that changing the levels of ICK/KRP proteins by overexpression or downregulation affects cell proliferation and plant growth, and also that the ubiquitin proteasome system is involved in degradation of ICK/KRPs. We show in this study that the region encompassing amino acids 21 to 40 is critical for ICK1 levels in both Arabidopsis and yeast. To determine how degradation of ICK1 is controlled, we analyzed the accumulation of hemagglutinin (HA) epitope‐tagged ICK1 proteins in yeast mutants defective for two ubiquitin E3 ligases. The highest level of HA‐ICK1 protein was observed when both the N‐terminal 1–40 sequence was removed and the SCF (SKP1–Cullin1–F‐box complex) function disrupted, suggesting the involvement of both SCF‐dependent and SCF‐independent mechanisms in the degradation of ICK1 in yeast. A short motif consisting of residues 21–30 is sufficient to render green fluorescent protein (GFP) unstable in plants and had a similar effect in plants regardless of whether it was fused to the N‐terminus or C‐terminus of GFP. Furthermore, results from a yeast ubiquitin receptor mutant rpn10Δ indicate that protein ubiquitination is not critical in the degradation of GFP‐ICK11–40 in yeast. These results thus identify a protein‐destabilizing sequence motif that does not contain a typical ubiquitination residue, suggesting that it probably functions through an SCF‐independent mechanism. 相似文献
8.
9.
10.
Hitomi Takagi Takehiro Kajihara Shiori Sugamata Aki Takashi Nobusawa Chikage Umeda‐Hara Masaaki Umeda 《The Plant journal : for cell and molecular biology》2014,80(3):541-552
Visualization of the spatiotemporal pattern of cell division is crucial to understand how multicellular organisms develop and how they modify their growth in response to varying environmental conditions. The mitotic cell cycle consists of four phases: S (DNA replication), M (mitosis and cytokinesis), and the intervening G1 and G2 phases; however, only G2/M‐specific markers are currently available in plants, making it difficult to measure cell cycle duration and to analyze changes in cell cycle progression in living tissues. Here, we developed another cell cycle marker that labels S‐phase cells by manipulating Arabidopsis CDT1a, which functions in DNA replication origin licensing. Truncations of the CDT1a coding sequence revealed that its carboxy‐terminal region is responsible for proteasome‐mediated degradation at late G2 or in early mitosis. We therefore expressed this region as a red fluorescent protein fusion protein under the S‐specific promoter of a histone 3.1‐type gene, HISTONE THREE RELATED2 (HTR2), to generate an S/G2 marker. Combining this marker with the G2/M‐specific CYCB1‐GFP marker enabled us to visualize both S to G2 and G2 to M cell cycle stages, and thus yielded an essential tool for time‐lapse imaging of cell cycle progression. The resultant dual‐color marker system, Cell Cycle Tracking in Plant Cells (Cytrap), also allowed us to identify root cells in the last mitotic cell cycle before they entered the endocycle. Our results demonstrate that Cytrap is a powerful tool for in vivo monitoring of the plant cell cycle, and thus for deepening our understanding of cell cycle regulation in particular cell types during organ development. 相似文献
11.
Arabidopsis acyl‐CoA‐binding protein ACBP3 participates in plant response to hypoxia by modulating very‐long‐chain fatty acid metabolism 下载免费PDF全文
Li‐Juan Xie Lu‐Jun Yu Qin‐Fang Chen Feng‐Zhu Wang Li Huang Fan‐Nv Xia Tian‐Ren Zhu Jian‐Xin Wu Jian Yin Bin Liao Nan Yao Wensheng Shu Shi Xiao 《The Plant journal : for cell and molecular biology》2015,81(1):53-67
12.
A land plant‐specific thylakoid membrane protein contributes to photosystem II maintenance in Arabidopsis thaliana 下载免费PDF全文
The structure and function of photosystem II (PSII) are highly susceptible to photo‐oxidative damage induced by high‐fluence or fluctuating light. However, many of the mechanistic details of how PSII homeostasis is maintained under photoinhibitory light remain to be determined. We describe an analysis of the Arabidopsis thaliana gene At5g07020, which encodes an unannotated integral thylakoid membrane protein. Loss of the protein causes altered PSII function under high‐irradiance light, and hence it is named ‘Maintenance of PSII under High light 1’ (MPH1). The MPH1 protein co‐purifies with PSII core complexes and co‐immunoprecipitates core proteins. Consistent with a role in PSII structure, PSII complexes (supercomplexes, dimers and monomers) of the mph1 mutant are less stable in plants subjected to photoinhibitory light. Accumulation of PSII core proteins is compromised under these conditions in the presence of translational inhibitors. This is consistent with the hypothesis that the mutant has enhanced PSII protein damage rather than defective repair. These data are consistent with the distribution of the MPH1 protein in grana and stroma thylakoids, and its interaction with PSII core complexes. Taken together, these results strongly suggest a role for MPH1 in the protection and/or stabilization of PSII under high‐light stress in land plants. 相似文献
13.
Byeong Wook Jeon Biswa R. Acharya Sarah M. Assmann 《The Plant journal : for cell and molecular biology》2019,99(2):231-244
Cytosolic calcium concentration ([Ca2+]cyt) and heterotrimeric G‐proteins are universal eukaryotic signaling elements. In plant guard cells, extracellular calcium (Cao) is as strong a stimulus for stomatal closure as the phytohormone abscisic acid (ABA), but underlying mechanisms remain elusive. Here, we report that the sole Arabidopsis heterotrimeric Gβ subunit, AGB1, is required for four guard cell Cao responses: induction of stomatal closure; inhibition of stomatal opening; [Ca2+]cyt oscillation; and inositol 1,4,5‐trisphosphate (InsP3) production. Stomata in wild‐type Arabidopsis (Col) and in mutants of the canonical Gα subunit, GPA1, showed inhibition of stomatal opening and promotion of stomatal closure by Cao. By contrast, stomatal movements of agb1 mutants and agb1/gpa1 double‐mutants, as well as those of the agg1agg2 Gγ double‐mutant, were insensitive to Cao. These behaviors contrast with ABA‐regulated stomatal movements, which involve GPA1 and AGB1/AGG3 dimers, illustrating differential partitioning of G‐protein subunits among stimuli with similar ultimate impacts, which may facilitate stimulus‐specific encoding. AGB1 knockouts retained reactive oxygen species and NO production, but lost YC3.6‐detected [Ca2+]cyt oscillations in response to Cao, initiating only a single [Ca2+]cyt spike. Experimentally imposed [Ca2+]cyt oscillations restored stomatal closure in agb1. Yeast two‐hybrid and bimolecular complementation fluorescence experiments revealed that AGB1 interacts with phospholipase Cs (PLCs), and Cao induced InsP3 production in Col but not in agb1. In sum, G‐protein signaling via AGB1/AGG1/AGG2 is essential for Cao‐regulation of stomatal apertures, and stomatal movements in response to Cao apparently require Ca2+‐induced Ca2+ release that is likely dependent on Gβγ interaction with PLCs leading to InsP3 production. 相似文献
14.
Development of iFOX‐hunting as a functional genomic tool and demonstration of its use to identify early senescence‐related genes in the polyploid Brassica napus 下载免费PDF全文
Chinedu Charles Nwafor Junluo Cheng Maoteng Li Qing Xu Jian Wu Lu Gan Qingyong Yang Chao Liu Ming Chen Yongming Zhou Edgar B. Cahoon Chunyu Zhang 《Plant biotechnology journal》2018,16(2):591-602
Functional genomic studies of many polyploid crops, including rapeseed (Brassica napus), are constrained by limited tool sets. Here we report development of a gain‐of‐function platform, termed ‘iFOX (inducible Full‐length cDNA OvereXpressor gene)‐Hunting’, for inducible expression of B. napus seed cDNAs in Arabidopsis. A Gateway‐compatible plant gene expression vector containing a methoxyfenozide‐inducible constitutive promoter for transgene expression was developed. This vector was used for cloning of random cDNAs from developing B. napus seeds and subsequent Agrobacterium‐mediated transformation of Arabidopsis. The inducible promoter of this vector enabled identification of genes upon induction that are otherwise lethal when constitutively overexpressed and to control developmental timing of transgene expression. Evaluation of a subset of the resulting ~6000 Arabidopsis transformants revealed a high percentage of lines with full‐length B. napus transgene insertions. Upon induction, numerous iFOX lines with visible phenotypes were identified, including one that displayed early leaf senescence. Phenotypic analysis of this line (rsl‐1327) after methoxyfenozide induction indicated high degree of leaf chlorosis. The integrated B. napuscDNA was identified as a homolog of an Arabidopsis acyl‐CoA binding protein (ACBP) gene designated BnACBP1‐like. The early senescence phenotype conferred by BnACBP1‐like was confirmed by constitutive expression of this gene in Arabidopsis and B. napus. Use of the inducible promoter in the iFOX line coupled with RNA‐Seq analyses allowed mechanistic clues and a working model for the phenotype associated with BnACBP1‐like expression. Our results demonstrate the utility of iFOX‐Hunting as a tool for gene discovery and functional characterization of Brassica napus genome. 相似文献
15.
An evolutionarily conserved P‐subfamily pentatricopeptide repeat protein is required to splice the plastid ndhA transcript in the moss Physcomitrella patens and Arabidopsis thaliana 下载免费PDF全文
Ayaka Ito Chieko Sugita Mizuho Ichinose Yoshinobu Kato Hiroshi Yamamoto Toshiharu Shikanai Mamoru Sugita 《The Plant journal : for cell and molecular biology》2018,94(4):638-648
16.
Quantification of plant surface metabolites by matrix‐assisted laser desorption–ionization mass spectrometry imaging: glucosinolates on Arabidopsis thaliana leaves 下载免费PDF全文
Rohit Shroff Katharina Schramm Verena Jeschke Peter Nemes Akos Vertes Jonathan Gershenzon Aleš Svatoš 《The Plant journal : for cell and molecular biology》2015,81(6):961-972
The localization of metabolites on plant surfaces has been problematic because of the limitations of current methodologies. Attempts to localize glucosinolates, the sulfur‐rich defense compounds of the order Brassicales, on leaf surfaces have given many contradictory results depending on the method employed. Here we developed a matrix‐assisted laser desorption–ionization (MALDI) mass spectrometry protocol to detect surface glucosinolates on Arabidopsis thaliana leaves by applying the MALDI matrix through sublimation. Quantification was accomplished by spotting glucosinolate standards directly on the leaf surface. The A. thaliana leaf surface was found to contain approximately 15 nmol of total glucosinolate per leaf with about 50 pmol mm?2 on abaxial (bottom) surfaces and 15–30 times less on adaxial (top) surfaces. Of the major compounds detected, 4‐methylsulfinylbutylglucosinolate, indol‐3‐ylmethylglucosinolate, and 8‐methylsulfinyloctylglucosinolate were also major components of the leaf interior, but the second most abundant glucosinolate on the surface, 4‐methylthiobutylglucosinolate, was only a trace component of the interior. Distribution on the surface was relatively uniform in contrast to the interior, where glucosinolates were distributed more abundantly in the midrib and periphery than the rest of the leaf. These results were confirmed by two other mass spectrometry‐based techniques, laser ablation electrospray ionization and liquid extraction surface analysis. The concentrations of glucosinolates on A. thaliana leaf surfaces were found to be sufficient to attract the specialist feeding lepidopterans Plutella xylostella and Pieris rapae for oviposition. The methods employed here should be easily applied to other plant species and metabolites. 相似文献
17.
The DC1‐domain protein VACUOLELESS GAMETOPHYTES is essential for development of female and male gametophytes in Arabidopsis 下载免费PDF全文
Sebastián D'Ippólito Leonardo Agustín Arias Claudia Anahí Casalongué Gabriela Carolina Pagnussat Diego Fernando Fiol 《The Plant journal : for cell and molecular biology》2017,90(2):261-275
In this work we identified VACUOLELESS GAMETOPHYTES (VLG) as a DC1 domain‐containing protein present in the endomembrane system and essential for development of both female and male gametophytes. VLG was originally annotated as a gene coding for a protein of unknown function containing DC1 domains. DC1 domains are cysteine‐ and histidine‐rich zinc finger domains found exclusively in the plant kingdom that have been named on the basis of similarity with the C1 domain present in protein kinase C (PKC). In Arabidopsis, both male and female gametophytes are characterized by the formation of a large vacuole early in development; this is absent in vlg mutant plants. As a consequence, development is arrested in embryo sacs and pollen grains at the first mitotic division. VLG is specifically located in multivesicular bodies or pre‐vacuolar compartments, and our results suggest that vesicular fusion is affected in the mutants, disrupting vacuole formation. Supporting this idea, AtPVA12 – a member of the SNARE vesicle‐associated protein family and previously related to a sterol‐binding protein, was identified as a VLG interactor. A role for VLG is proposed mediating vesicular fusion in plants as part of the sterol trafficking machinery required for vacuole biogenesis in plants. 相似文献
18.
19.
20.
Seong Gwan Yu Jong Hum Kim Na Hyun Cho Tae Rin Oh Woo Taek Kim 《The Plant journal : for cell and molecular biology》2020,103(2):824-842
Ubiquitination is a critical post‐translational protein modification that has been implicated in diverse cellular processes, including abiotic stress responses, in plants. In the present study, we identified and characterized a T‐DNA insertion mutant in the At5g10650 locus. Compared to wild‐type Arabidopsis plants, at5g10650 progeny were hyposensitive to ABA at the germination stage. At5g10650 possessed a single C‐terminal C3HC4‐type Really Interesting New Gene (RING) motif, which was essential for ABA‐mediated germination and E3 ligase activity in vitro. At5g10650 was closely associated with microtubules and microtubule‐associated proteins in Arabidopsis and tobacco leaf cells. Localization of At5g10650 to the nucleus was frequently observed. Unexpectedly, At5g10650 was identified as JAV1‐ASSOCIATED UBIQUITIN LIGASE1 (JUL1), which was recently reported to participate in the jasmonate signaling pathway. The jul1 knockout plants exhibited impaired ABA‐promoted stomatal closure. In addition, stomatal closure could not be induced by hydrogen peroxide and calcium in jul1 plants. jul1 guard cells accumulated wild‐type levels of H2O2 after ABA treatment. These findings indicated that JUL1 acts downstream of H2O2 and calcium in the ABA‐mediated stomatal closure pathway. Typical radial arrays of microtubules were maintained in jul1 guard cells after exposure to ABA, H2O2, and calcium, which in turn resulted in ABA‐hyposensitive stomatal movements. Finally, jul1 plants were markedly more susceptible to drought stress than wild‐type plants. Overall, our results suggest that the Arabidopsis RING E3 ligase JUL1 plays a critical role in ABA‐mediated microtubule disorganization, stomatal closure, and tolerance to drought stress. 相似文献