首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Titanosauriformes was a globally distributed, long‐lived clade of dinosaurs that contains both the largest and smallest known sauropods. These common and diverse megaherbivores evolved a suite of cranial and locomotory specializations perhaps related to their near‐ubiquity in Mesozoic ecosystems. In an effort to understand the phylogenetic relationships of their early (Late Jurassic–Early Cretaceous) members, this paper presents a lower‐level cladistic analysis of basal titanosauriforms in which 25 ingroup and three outgroup taxa were scored for 119 characters. Analysis of these characters resulted in the recovery of three main clades: Brachiosauridae, a cosmopolitan mix of Late Jurassic and Early Cretaceous sauropods, Euhelopodidae, a clade of mid‐Cretaceous East Asian sauropods, and Titanosauria, a large Cretaceous clade made up of mostly Gondwanan genera. Several putative brachiosaurids were instead found to represent non‐titanosauriforms or more derived taxa, and no support for a Laurasia‐wide clade of titanosauriforms was found. This analysis establishes robust synapomorphies for many titanosauriform subclades. A re‐evaluation of the phylogenetic affinities of fragmentary taxa based on these synapomorphies found no body fossil evidence for titanosaurs before the middle Cretaceous (Aptian), in contrast to previous reports of Middle and Late Jurassic forms. Purported titanosaur track‐ways from the Middle Jurassic either indicate a substantial ghost lineage for the group or – more likely – represent non‐titanosaurs. Titanosauriform palaeobiogeographical history is the result of several factors including differential extinction and dispersal. This study provides a foundation for future study of basal titanosauriform phylogeny and the origins of Titanosauria. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 166 , 624–671.  相似文献   

2.
3.
4.
5.
Abstract: The sauropod dinosaur ‘Bothriospondylus’, originally named on the basis of Late Jurassic remains from England, is demonstrated to be invalid, and the characters used to diagnose it are shown to be obsolescent features which are widespread throughout Sauropoda. Material referred to this genus spans a temporal range from the Middle Jurassic until the early Late Cretaceous and has been described from five different countries, across three continents. These remains represent a wide array of sauropod groups, comprising non‐neosauropod eusauropods, a macronarian, titanosauriforms (including at least one definite brachiosaurid) and a rebbachisaurid. The type material of the Middle Jurassic ‘B. madagascariensis’ represents a derived non‐neosauropod eusauropod and possesses two potential autapomorphies. However, as a result of the fragmentary nature of the material and the uncertainty surrounding its association, a new taxon is not erected. Of the numerous specimens referred to ‘Bothriospondylus’, however, several remains are considered diagnostic: Ornithopsis hulkei (Early Cretaceous, UK), Lapparentosaurus madagascariensis (Middle Jurassic, Madagascar) and Nopcsaspondylus alarconensis (early Late Cretaceous, Argentina). At least three types of sauropod were present in the Bathonian (Middle Jurassic) of north‐west Madagascar, with a basal eusauropod (Archaeodontosaurus), a more derived eusauropod (‘B. madagascariensis’) and a titanosauriform (Lapparentosaurus) all approximately contemporaneous. Palaeocontinental reconstructions suggest that Middle Jurassic Madagascan sauropods would still have been capable of global biotic interchange, and this is perhaps reflected in their diverse assemblage. Re‐evaluation of these Malagasy forms has shed new light on this important time period in sauropod evolution.  相似文献   

6.
The Upper Jurassic of the Lusitanian Basin (Portugal) is particularly rich in sauropod fossil remains, with four established taxa: Dinheirosaurus, Lusotitan, Lourinhasaurus and Zby. The presence of sauropod caudal procoelous vertebrae is reported for the first time in the Upper Jurassic of Portugal, with specimens described from the localities of Baleal, Paimogo, Praia da Areia Branca, Porto das Barcas, and Praia da Corva. The presence of slightly procoelous centra and fan-shaped caudal ribs with smooth prezygapophyseal centrodiapophyseal fossa in the more anterior caudal vertebrae allows for the assignment of these specimens to an indeterminate eusauropod, probably belonging to a non-neosauropod eusauropod form. The absence of several features in the Portuguese specimens that are common in diplodocids, mamenchisaurids and titanosaurs, prevents the establishment of sound relationships with these clades. The described specimens are almost identical to the anterior caudal vertebrae of the Iberian turiasaur Losillasaurus. During the Iberian Late Jurassic, Turiasauria is the only Iberian group of sauropods, which shares this type of morphology with the Baleal, Paimogo, Praia da Areia Branca, Porto das Barcas and Praia da Corva specimens. These specimens represent one of the four anterior caudal vertebral morphotypes recorded in the Upper Jurassic of the Lusitanian Basin and briefly described herein.  相似文献   

7.
8.
Megalosaurus bucklandii (Dinosauria: Theropoda), the oldest named dinosaur taxon, from the Bathonian (Middle Jurassic) of England, is a valid taxon diagnosed by a unique character combination of the lectotype dentary. Abundant referred material is described and several autapomorphies are identified: ventral surfaces of first and third to fifth sacral centra evenly rounded, ventral surface of second sacral centrum bearing longitudinal, angular ridge; dorsally directed flange around midheight on the scapular blade; an array of posterodorsally inclined grooves on the lateral surface of the median iliac ridge; anteroposteriorly thick ischial apron with an almost flat medial surface; and complementary groove and ridge structures on the articular surfaces between metatarsals II and III. A new phylogenetic analysis focuses on basal tetanurans and includes 41 taxa, six of which have never been included in a cladistic analysis, and 213 characters, 29 of which are new. This is the first phylogenetic analysis to focus on basal tetanuran relationships, and it reveals several new results. Megalosauroidea (= Spinosauroidea) includes two clades, basal to the traditional content of Megalosauridae + Spinosauridae. These comprise Xuanhanosaurus, Marshosaurus, Condorraptor + Piatnitzkysaurus and Chuandongocoelurus + Monolophosaurus. Almost all large‐bodied Middle Jurassic theropods are megalosauroids, but Poekilopleuron is an allosauroid. Megalosauroids show geographical differentiation among clades, indicating the development of endemic theropod faunas across Pangaea during the Middle Jurassic. Notably, megalosaurids are not known from outside of Europe during this epoch. Megalosauroids are less diverse and abundant during the Late Jurassic, when most theropods are neotetanurans and allosauroids dominate the large‐bodied predator niche. This indicates faunal turnover between the Middle and Late Jurassic. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 158 , 882–935.  相似文献   

9.
Abstract: Morphological changes in the ontogeny of sauropods are poorly known, making difficult to establish the systematic affinities of very young individuals. New information on an almost complete juvenile sauropod (SMA 0009) with an estimated total length of about 2 m is here presented. The specimen was described as a diplodocid owing to the presence of some putative synapomorphies of this group. However, recent further preparation revealed the absence of diplodocid characters and the presence of macronarian derived characters. To test the affinities of this specimen, a phylogenetic analysis was conducted. The strict consensus tree recovers the specimen as a basal titanosauriform, in an unresolved relation with Brachiosaurus and Giraffatitan. Nevertheless, a brachiosaurid assignment is here suggested in base of the widely accepted monophyly of this group (only recovered when SMA 0009 is placed within this group). Although the existence of a new taxon cannot be completely ruled out, the combination of derived and plesiomorphic characters in the specimen suggests its assignment to Brachiosaurus. Sixteen extra steps are needed to place this specimen within Diplodocidae. The high cost to place this specimen within this group is owing to the fact that several diplodocid characters are absent in SMA 0009, such as the absence of divided centroprezygapophyseal lamina in cervical vertebrae, procoelous anterior caudal centra, composed lateral lamina in anterior caudal vertebrae, elongated middle caudal vertebrae, short cervical ribs and caudolateral projection of distal condyle of metatarsal I. Finally, the systematic position reveals few major ontogenetic transformations. These affect the pneumatic structures (e.g. change from simple pleurocoels in the cervical vertebrae to complex pleurocoels and the development of lateral excavations in the dorsal vertebrae) but also include unrecorded transformations of the neural spine (e.g. the development of the spinodiapophyseal lamina, the widening of the neural spines in the dorsal vertebrae) and allometric growth in some limb bones.  相似文献   

10.
Abstract:  The largest known flying organisms are the azhdarchid pterosaurs, a pterodactyloid clade previously diagnosed by the characters of their extremely elongate middle-series cervical vertebrae. The named species of the Azhdarchidae are from the Late Cretaceous. However, isolated mid-cervical vertebrae with similar dimensions and characters have been referred to this group that date back to the Late Jurassic, implying an almost 60 million year gap in the fossil record of this group and an unrecorded radiation in the Jurassic of all the major clades of the Pterodactyloidea. A new pterosaur from the Early Cretaceous of Liaoning Province of China, Elanodactylus prolatus gen. et sp. nov., is described with mid-cervical vertebrae that bear these azhdarchid characters but has other postcranial material that are distinct from the members of this group. Phylogenetic analysis of the new species and the Pterodactyloidea places it with the Late Jurassic vertebrae in the Late Jurassic–Early Cretaceous Ctenochasmatidae and reveals that the characters of the elongate azhdarchid vertebrae appeared independently in both groups. These results are realized though the large taxon sampling in the analysis demonstrating that the homoplastic character states present in these two taxa were acquired in a different order in their respective lineages. Some of these homoplastic characters were previously thought to appear once in the history of pterosaurs and may be correlated to the extension of the neck regions in both groups. Because the homoplastic character states in the Azhdarchidae and Ctenochasmatidae are limited to the mid-cervical vertebrae, these states are termed convergent based on a definition of the term in a phylogenetic context. A number of novel results from the analysis presented produce a reorganization in the different species and taxa of the Pterodactyloidea.  相似文献   

11.
12.
Theropod dinosaurs from the Late Jurassic of Gondwana are still poorly known, with Elaphrosaurus bambergi Janensch, 1920, from the late Kimmeridgian of Tendaguru, Tanzania, being the only taxon represented by more than isolated remains from Africa. Having long been considered a coelurosaurian, more specifically an ornithomimosaur, Elaphrosaurus is currently regarded as a basal ceratosaur. Here, we revise the osteology and phylogenetic position of this important taxon. Elaphrosaurus shows many unusual osteological characters, including extremely elongated and constricted cervical vertebrae, an expansive shoulder girdle with strongly modified forelimbs, a relatively small ilium, and elongate hindlimbs with a very small ascending process of the astragalus that is fused to the tibia. We found this taxon to share many derived characters with noasaurids, such as: strongly elongate cervical and dorsal vertebrae; low, rectangular neural spines in the mid‐caudal vertebrae; presence of only an anterior centrodiapophyseal lamina in anterior caudal vertebrae; presence of a wide, U–shaped notch between the glenoid and the anteroventral hook in the coracoid; a laterally flared postacetabular blade of the ilium; a flat anterior side of the distal tibia; and a reduced shaft of metatarsal II. Our analysis placed Elaphrosaurus within a dichotomous Noasauridae as part of a Jurassic subclade, here termed Elaphrosaurinae, that otherwise includes taxa from eastern Asia. These results underscore the long and complex evolutionary history of abelisauroids, which is still only beginning to be understood.  相似文献   

13.
Sauropod dinosaur phylogeny: critique and cladistic analysis   总被引:6,自引:0,他引:6  
Sauropoda is among the most diverse and widespread dinosaurlineages, having attained a near‐global distribution by the MiddleJurassic that was built on throughout the Cretaceous. These giganticherbivores are characterized by numerous skeletal specializationsthat accrued over a 140 million‐year history. This fascinating evolutionaryhistory has fuelled interest for more than a century, yet aspectsof sauropod interrelationships remain unresolved. This paper presentsa lower‐level phylogenetic analysis of Sauropoda in two parts. First,the two most comprehensive analyses of Sauropoda are critiqued toidentify points of agreement and difference and to create a coreof character data for subsequent analyses. Second, a generic‐levelphylogenetic analysis of 234 characters in 27 sauropod taxa is presentedthat identifies well supported nodes as well as areas of poorerresolution. The analysis resolves six sauropod outgroups to Neosauropoda,which comprises the large‐nostrilled clade Macronaria and the peg‐toothedclade Diplodocoidea. Diplodocoidea includes Rebbachisauridae, Dicraeosauridae,and Diplodocidae, whose monophyly and interrelationships are supportedlargely by cranial and vertebral synapomorphies. In contrast, thearrangement of macronarians, particularly those of titanosaurs,are based on a preponderance of appendicular synapomorphies. The purportedChinese clade ‘Euhelopodidae’ is shown to comprisea polyphyletic array of basal sauropods and neosauropods. The synapomorphiessupporting this topology allow more specific determination for themore than 50 fragmentary sauropod taxa not included in this analysis.Their distribution and phylogenetic affinities underscore the diversityof Titanosauria and the paucity of Late Triassic and Early Jurassicgenera. The diversification of Titanosauria during the Cretaceousand origin of the sauropod body plan duringthe Late Triassic remain frontiers for future studies. © 2002The Linnean Society of London, Zoological Journal of the LinneanSociety, 2002, 136 , 217?276.  相似文献   

14.
15.
Abstract Dictyoptera, comprising Blattaria, Isoptera, and Mantodea, are diverse in appearance and life history, and are strongly supported as monophyletic. We downloaded COII, 16S, 18S, and 28S sequences of 39 dictyopteran species from GenBank. Ribosomal RNA sequences were aligned manually with reference to secondary structure. We included morphological data (maximum of 175 characters) for 12 of these taxa and for an additional 15 dictyopteran taxa (for which we had only morphological data). We had two datasets, a 59‐taxon dataset with five outgroup taxa, from Phasmatodea (2 taxa), Mantophasmatodea (1 taxon), Embioptera (1 taxon), and Grylloblattodea (1 taxon), and a 62‐taxon dataset with three additional outgroup taxa from Plecoptera (1 taxon), Dermaptera (1 taxon) and Orthoptera (1 taxon). We analysed the combined molecular?morphological dataset using the doublet and MK models in Mr Bayes , and using a parsimony heuristic search in paup . Within the monophyletic Mantodea, Mantoida is recovered as sister to the rest of Mantodea, followed by Chaeteessa; the monophyly of most of the more derived families as defined currently is not supported. We recovered novel phylogenetic hypotheses about the taxa within Blattodea (following Hennig, containing Isoptera). Unique to our study, one Bayesian analysis places Polyphagoidea as sister to all other Dictyoptera; other analyses and/or the addition of certain orthopteran sequences, however, place Polyphagoidea more deeply within Dictyoptera. Isoptera falls within the cockroaches, sister to the genus Cryptocercus. Separate parsimony analyses of independent gene fragments suggest that gene selection is an important factor in tree reconstruction. When we varied the ingroup taxa and/or outgroup taxa, the internal dictyopteran relationships differed in the position of several taxa of interest, including Cryptocercus, Polyphaga, Periplaneta and Supella. This provides further evidence that the choice of both outgroup and ingroup taxa greatly affects tree topology.  相似文献   

16.
In recent decades a unique association of basal neosauropod and turiasaur sauropods has been described from the Jurassic–Cretaceous transition of Spain. In this context, a sauropod femur from the Tithonian–Berriasian is studied for the first time. The femur in question is an isolated specimen, recovered from the Tera Group in Tera (Soria). It displays a unique mosaic of derived characters as yet undescribed in femora of the Upper Jurassic and Lower Cretaceous of Spain. A prominent lateral bulge, high eccentricity, and a lateromedially flattened proximal end link the femur from Tera with Titanosauriformes. Moreover, it presents a significant distal projection of the tibial condyle, a character observed in Asiatic Titanosauriformes of the Lower Cretaceous. The femur from Tera adds a fifth sauropod taxon to the Tithonian–Berriasian of Spain, and, for the first time, a representative of Titanosauriformes.  相似文献   

17.
Increased excavation of dinosaurs from China over the last two decades has enriched the record of Asian titanosauriform sauropods. However, the relationships of these sauropods remain contentious, and hinges on a few well-preserved taxa, such as Euhelopus zdanskyi. Here we describe a new sauropod, Yongjinglong datangi gen. nov. et sp. nov., from the Lower Cretaceous Hekou Group in the Lanzhou Basin of Gansu Province, northwestern China. Yongjinglong datangi is characterized by the following unique combination of characters, including seven autapomorphies: long-crowned, spoon-shaped premaxillary tooth; axially elongate parapophyses on the cervical vertebra; very deep lateral pneumatic foramina on the lateral surfaces of the cervical and cranial dorsal vertebral centra; low, unbifurcated neural spine fused with the postzygapophyses to form a cranially-pointing, triangular plate in a middle dorsal vertebra; an “XI”-shaped configuration of the laminae on the arches of the middle dorsal vertebrae; a very long scapular blade with straight cranial and caudal edges; and a tall, deep groove on the lateral surface of the distal shaft of the radius. The new specimen shares several features with other sauropods: a pronounced M. triceps longus tubercle on the scapula and ventrolaterally elongated parapophyses in its cervical vertebra as in Euhelopodidae. Based on phylogenetic analyses Yongjinglong datangi is highly derived within Titanosauria, which suggests either a remarkable convergence with more basal titanosauriform sauropods in the Early Cretaceous or a retention of plesiomorphic features that were lost in other titanosaurians. The morphology and remarkable length of the scapulocoracoid reveal an unusual relationship between the shoulder and the middle trunk: the scapulocoracoid spans over half of the length of the trunk. The medial, notch-shaped coracoid foramen and the partially fused scapulocoracoid synostosis suggest that the specimen is a subadult individual. This specimen sheds new light on the diversity of Early Cretaceous Titanosauriformes in China.  相似文献   

18.
Atoposaurids are a group of small‐bodied, extinct crocodyliforms, regarded as an important component of Jurassic and Cretaceous Laurasian semi‐aquatic ecosystems. Despite the group being known for over 150 years, the taxonomic composition of Atoposauridae and its position within Crocodyliformes are unresolved. Uncertainty revolves around their placement within Neosuchia, in which they have been found to occupy a range of positions from the most basal neosuchian clade to more crownward eusuchians. This problem stems from a lack of adequate taxonomic treatment of specimens assigned to Atoposauridae, and key taxa such as Theriosuchus have become taxonomic ‘waste baskets’. Here, we incorporate all putative atoposaurid species into a new phylogenetic data matrix comprising 24 taxa scored for 329 characters. Many of our characters are heavily revised or novel to this study, and several ingroup taxa have never previously been included in a phylogenetic analysis. Parsimony and Bayesian approaches both recover Atoposauridae as a basal clade within Neosuchia, more stemward than coelognathosuchians, bernissartiids, and paralligatorids. Atoposauridae is a much more exclusive clade than previously recognized, comprising just three genera (Alligatorellus, Alligatorium, and Atoposaurus) that were restricted to the Late Jurassic of western Europe, and went extinct at the Jurassic/Cretaceous boundary. A putative Gondwanan atoposaurid (Brillanceausuchus) is recovered as a paralligatorid. Our results exclude both Montsecosuchus and Theriosuchus from Atoposauridae. Theriosuchus is polyphyletic, forming two groupings of advanced neosuchians. Theriosuchus (restricted to Theriosuchus pusillus, Theriosuchus guimarotae, and Theriosuchus grandinaris) spanned the Middle Jurassic to early Late Cretaceous, and is known from Eurasia and North Africa. Two Cretaceous species previously assigned to Theriosuchus (‘Theriosuchusibericus and ‘Theriosuchussympiestodon) are shown to be nested within Paralligatoridae, and we assign them to the new genus Sabresuchus. The revised phylogenetic placement of Theriosuchus has several implications for our understanding of eusuchian evolution. Firstly, the presence of fully pterygoidean choanae, previously regarded as a defining characteristic of Eusuchia, is not found in some basal members of Eusuchia. However, eusuchians can be distinguished from Theriosuchus and other basal neosuchians in that their choanae are posteriorly positioned, with an anterior margin medial to the posterior edge of the suborbital fenestra. This feature distinguishes eusuchians from Theriosuchus and more basal neosuchians. Secondly, our refined understanding of Theriosuchus implies that this taxon possessed only amphicoelous presacral vertebrae, and therefore fully developed vertebral procoely is likely to have evolved only once in Crocodylomorpha, on the lineage leading to Eusuchia. These and other findings presented herein will provide an important framework for understanding the neosuchian–eusuchian transition.  相似文献   

19.
Javier Luque 《Palaeontology》2015,58(2):251-263
Despite the extensive fossil record of higher crabs (Eubrachyura) from Late Cretaceous and Cenozoic rocks worldwide, their Early Cretaceous occurrences are scarce and fragmentary, obscuring our understanding of their early evolution. Until now, representatives of only two families of eubrachyuran‐like crabs were known from the Early Cretaceous: Componocancridae and Tepexicarcinidae fam. nov., both monospecific lineages from the Albian (~110–100 Ma) of North and Central America, respectively. The discovery of Telamonocarcinus antiquus sp. nov. (Telamonocarcinidae) from the early Albian of Colombia, South America (~110 Ma), increases to three the number of known Early Cretaceous eubrachyuran‐like families. The ages and geographical distributions of the oldest eubrachyuran‐like taxa (i.e. Componocancridae, Telamonocarcinidae and Tepexicarcinidae fam. nov.) suggest that the oldest higher true crabs might have originated in the Americas; that they were already morphologically diverse by the late Early Cretaceous; and that their most recent common ancestor must be rooted in the Early Cretaceous, or even the Late Jurassic.  相似文献   

20.
The fossil record of tyrannosauroid theropods is marked by a substantial temporal and morphological gap between small-bodied, Barremian taxa, and extremely large-bodied taxa from the latest Cretaceous. Here we describe a new tyrannosauroid, Xiongguanlong baimoensis n. gen. et sp., from the Aptian–Albian Xinminpu Group of western China that represents a phylogenetic, morphological, and temporal link between these disjunct portions of tyrannosauroid evolutionary history. Xiongguanlong is recovered in our phylogenetic analysis as the sister taxon to Tyrannosauridae plus Appalachiosaurus, and marks the appearance of several tyrannosaurid hallmark features, including a sharp parietal sagittal crest, a boxy basicranium, a quadratojugal with a flaring dorsal process and a flexed caudal edge, premaxillary teeth bearing a median lingual ridge, and an expanded axial neural spine surmounted by distinct processes at its corners. Xiongguanlong is characterized by a narrow and elongate muzzle resembling that of Alioramus. The slender, unornamented nasals of Xiongguanlong are inconsistent with recent hypotheses of correlated progression in tyrannosauroid feeding mechanics, and suggest more complex patterns of character evolution in the integration of feeding adaptations in tyrannosaurids. Body mass estimates for the full-grown holotype specimen of Xiongguanlong fall between those of Late Cretaceous tyrannosaurids and Barremian tyrannosauroids, suggesting that the trend of increasing body size observed in North American Late Cretaceous Tyrannosauridae may extend through the Cretaceous history of Tyrannosauroidea though further phylogenetic work is required to corroborate this.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号