首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new self‐assembly platform for the fast and straightforward synthesis of bicontinuous, mesoporous TiO2 films is presented, based on the triblock terpolymer poly(isoprene ‐ b ‐ styrene ‐ b ‐ ethylene oxide). This new materials route allows the co‐assembly of the metal oxide as a fully interconnected minority phase, which results in a highly porous photoanode with strong advantages over the state‐of‐the‐art nanoparticle‐based photoanodes employed in solid‐state dye‐sensitized solar cells. Devices fabricated through this triblock terpolymer route exhibit a high availability of sub‐bandgap states distributed in a narrow and low enough energy band, which maximizes photoinduced charge generation from a state‐of‐the‐art organic dye, C220. As a consequence, the co‐assembled mesoporous metal oxide system outperformed the conventional nanoparticle‐based electrodes fabricated and tested under the same conditions, exhibiting solar power‐conversion efficiencies of over 5%.  相似文献   

2.
A new form of TiO2 microspheres comprised of anatase/TiO2‐B ultrathin composite nanosheets has been synthesized successfully and used as Li‐ion storage electrode material. By comparison between samples obtained with different annealing temperatures, it is demonstrated that the anatase/TiO2‐B coherent interfaces may contribute additional lithium storage venues due to a favorable charge separation at the boundary between the two phases. The as‐prepared hierarchical nanostructures show capacities of 180 and 110 mAh g?1 after 1000 cycles at current densities of 3400 and 8500 mA g?1. The ultrathin nanosheet structure which provides short lithium diffusion length and high electrode/electrolyte contact area also accounts for the high capacity and long‐cycle stability.  相似文献   

3.
The COVID‐19 pandemic has triggered numerous scientific activities aimed at understanding the SARS‐CoV‐2 virus and ultimately developing treatments. Structural biologists have already determined hundreds of experimental X‐ray, cryo‐EM, and NMR structures of proteins and nucleic acids related to this coronavirus, and this number is still growing. To help biomedical researchers, who may not necessarily be experts in structural biology, navigate through the flood of structural models, we have created an online resource, covid19.bioreproducibility.org, that aggregates expert‐verified information about SARS‐CoV‐2‐related macromolecular models. In this article, we describe this web resource along with the suite of tools and methodologies used for assessing the structures presented therein.  相似文献   

4.
5.
The benefits of incorporating binary metal‐oxide electrodes en route toward efficient dye‐sensitized solar cells (DSSCs) have recently emerged. The current work aims at realizing efficient indium‐doped zinc oxide based DSSCs by means of enhancing charge transport processes and reducing recombination rates. Electrochemical impedance spectroscopic assays corroborate that low amounts of indium reduce charge transport resistances and increase electron recombination resistances. The latter are in concert with a remarkable enhancement of the charge collection efficiency from 33% to 83% for devices with ZnO and In15Zn85O photoanodes, respectively. Going beyond 15 mol% of indium, an effective electron trapping increases the charge transport resistance and, in turn, dramatically reduces charge collection efficiency. Upon implementing In15Zn85O into an electron cascade photoanode architecture featuring an In15Zn85O bottom layer and a ZnO top layer, a device efficiency of 5.77% and a significantly high current density of 20.4 mA cm?2 in binary ZnO DSSCs are achieved.  相似文献   

6.
The synthesis of in situ polymer‐functionalized anatase TiO2 particles using an anchoring block copolymer with hydroxamate as coordinating species is reported, which yields nanoparticles (≈11 nm) in multigram scale. Thermal annealing converts the polymer brushes into a uniform and homogeneous carbon coating as proven by high resolution transmission electron microscopy and Raman spectroscopy. The strong impact of particle size as well as carbon coating on the electrochemical performance of anatase TiO2 is demonstrated. Downsizing the particles leads to higher reversible uptake/release of sodium cations per formula unit TiO2 (e.g., 0.72 eq. Na+ (11 nm) vs only 0.56 eq. Na+ (40 nm)) while the carbon coating improves rate performance. The combination of small particle size and homogeneous carbon coating allows for the excellent electrochemical performance of anatase TiO2 at high (134 mAh g?1 at 10 C (3.35 A g?1)) and low (≈227 mAh g?1 at 0.1 C) current rates, high cycling stability (full capacity retention between 2nd and 300th cycle at 1 C) and improved coulombic efficiency (≈99.8%).  相似文献   

7.
Three‐dimensional mesoporous TiO2‐Sn/C core‐shell nanowire arrays are prepared on Ti foil as anodes for lithium‐ion batteries. Sn formed by a reduction of SnO2 is encapsulated into TiO2 nanowires and the carbon layer is coated onto it. For additive‐free, self‐supported anodes in Li‐ion batteries, this unique core‐shell composite structure can effectively buffer the volume change, suppress cracking, and improve the conductivity of the electrode during the discharge‐charge process, thus resulting in superior rate capability and excellent long‐term cycling stability. Specifically, the TiO2‐Sn/C nanowire arrays display rechargeable discharge capacities of 769, 663, 365, 193, and 90 mA h g?1 at 0.1C, 0.5C, 2C 10C, and 30C, respectively (1C = 335 mA g?1). Furthermore, the TiO2‐Sn/C nanowire arrays exhibit a capacity retention rate of 84.8% with a discharge capacity of over 160 mA h g?1, even after 100 cycles at a high current rate of 10C.  相似文献   

8.
9.
10.
11.
Two new α‐pyrones (=2H‐pyran‐2‐ones), ficipyrones A and B ( 1 and 2 , resp.), and two new α‐furanones (=2H‐furan‐2‐ones), ficifuranones A and B ( 3 and 4 , resp.), together with three known metabolites, antibiotic F 0368 ( 5 ), hydroxyseiridin ( 6 ), and hydroxyisoseiridin ( 7 ), were isolated from solid cultures of the plant endophytic fungus Pestalotiopsis fici. Their structures were elucidated primarily by NMR spectroscopy, and the absolute configuration of 1 was deduced from the circular‐dichroism (CD) data. Compound 1 showed antifungal activity against the plant pathogen Gibberella zeae (CGMCC 3.2873) with an IC50 value of 15.9 μM .  相似文献   

12.
13.
14.
15.
A crucial issue regarding emerging nanotechnologies remains the up‐scaling of new functional nanostructured materials towards their implementation in high performance applications on a large scale. In this context, we demonstrate high efficiency solid‐state dye‐sensitized solar cells prepared from new porous TiO2 photoanodes based on laser pyrolysis nanocrystals. This strategy exploits a reduced number of processing steps as well as non‐toxic chemical compounds to demonstrate highly porous TiO2 films. The possibility to easily tune the TiO2 nanocrystal physical properties allows us to demonstrate all solid‐state dye‐sensitized devices based on a commercial benchmark materials (organic indoline dye and molecular hole transporter) presenting state‐of‐the‐art performance comparable with reference devices based on a commercial TiO2 paste. In particular, a drastic improvement in pore infiltration, which is found to balance a relatively lower surface area compared to the reference electrode, is evidenced using laser‐synthesized nanocrystals resulting in an improved short‐circuit current density under full sunlight. Transient photovoltage decay measurements suggest that charge recombination kinetics still limit device performance. However, the proposed strategy emphasizes the potentialities of the laser pyrolysis technique for up‐scaling nanoporous TiO2 electrodes for various applications, especially for solar energy conversion.  相似文献   

16.
17.
We evaluated reproductive isolation in two species of palms (Howea) that have evolved sympatrically on Lord Howe Island (LHI, Australia). We estimated the strength of some pre‐ and post‐zygotic mechanisms in maintaining current species boundaries. We found that flowering time displacement between species is consistent across in and ex situ common gardens and is thus partly genetically determined. On LHI, pre‐zygotic isolation due solely to flowering displacement was 97% for Howea belmoreana and 80% for H. forsteriana; this asymmetry results from H. forsteriana flowering earlier than H. belmoreana and being protandrous. As expected, only a few hybrids (here confirmed by genotyping) at both juvenile and adult stages could be detected in two sites on LHI, in which the two species grow intermingled (the Far Flats) or adjacently (Transit Hill). Yet, the distribution of hybrids was different between sites. At Transit Hill, we found no hybrid adult trees, but 13.5% of younger palms examined there were of late hybrid classes. In contrast, we found four hybrid adult trees, mostly of late hybrid classes, and only one juvenile F1 hybrid in the Far Flats. This pattern indicates that selection acts against hybrids between the juvenile and adult stages. An in situ reciprocal seed transplant between volcanic and calcareous soils also shows that early fitness components (up to 36 months) were affected by species and soil. These results are indicative of divergent selection in reproductive isolation, although it does not solely explain the current distribution of the two species on LHI.  相似文献   

18.
This article describes an application of the host‐guest chiral recognition approach called tweezer methodology for the determination of the absolute configuration of 3‐hydroxy‐β‐lactams. These substrates represent challenging cases due to their chemical reactivity, the presence of multiple stereogenic centers and several functional groups which offer various possibilities of binding to the Zn‐porphyrin host. OPLS‐2005, the force field used in this work to predict the interporphyrin twist, modeled correctly the host‐guest complexation mechanism and revealed conformational details of the bound substrates. The computational study also suggested that in cases where an increase in the magnitude of the stereodifferentiation and an intense experimental CD are observed, the bound conformation of the conjugates are hydrogen bonded. The present investigation provides evidence that when the tweezer method is assisted by the OPLS‐2005 based computational approach, it can be successfully applied to the configurational and conformational elucidation of multi‐functional compounds with multiple stereogenic centers. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
TiCl4 surface treatment studies of porous electrode structure of TiO2 aggregates synthesized using an acidic precursor and CTAB as a templating agent are carried out in order to understand and improve upon recombination kinetics in the photonanode film matrix, together with enhancing the intrinsic light scattering. The key beneficial features of the photoanode included high surface roughness, necessary for superior dye adsorption, nanocrystallite aggregates leading to diffuse light scattering within the film matrix, and a hierarchical macro‐ and mesopore structure allowing good access of electrolyte to the dye, thereby assisting in dye regeneration (enhanced charge transfer). Pre‐treatment of the TiO2 electrodes reduced recombination at the fluorine‐doped tin oxide (FTO)/electrolyte interface. The post‐treatment study showed enhanced surface roughness through the deposition of a thin overlayer of amorphous TiO2 on the film structure. This led to a notable improvement in both dye adsorption and inherent light scattering effects by the TiO2 aggregates, resulting in enhanced energy harvesting. The thin TiO2 overlayer also acted as a barrier in a core‐shell configuration within the porous TiO2 matrix, and thereby reduced recombination. This allowed the hierarchical macro‐ and mesoporosity of the film matrix to be utilized more effectively for enhanced charge transfer during dye regeneration. Post‐treatment of the aggregated TiO2 matrix resulted in a 36% enhancement in power conversion efficiency from 4.41% of untreated cells to 6.01%.  相似文献   

20.
Developing a titanium dioxide (TiO2)‐based anode with superior high‐rate capability and long‐term cycling stability is important for efficient energy storage. Herein, a simple one‐step approach for fabricating blue TiO2 nanoparticles with oxygen vacancies is reported. Oxygen vacancies can enlarge lattice spaces, lower charge transfer resistance, and provide more active sites in TiO2 lattices. As a result, this blue TiO2 electrode exhibits a highly reversible capacity of 50 mAh g?1 at 100 C (16 800 mA g?1) even after 10 000 cycles, which is attributable to the combination of surface capacitive process and remarkable diffusion‐controlled insertion revealed by the kinetic analysis. The strategy of employing oxygen‐deficient nanoparticles may be extended to the design of other robust semiconductor materials as electrodes for energy storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号