首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relative contents of chondroitin 4- and 6-sulfates in cartilages of different human bones are reported. Articular and vertebral body cartilages contain almost exclusively chondroitin 6-sulfate, whereas growth and subarticular cartilages contain nearly equal amounts of chondroitin 4-sulfate and chondroitin 6-sulfate. Adult cartilages, where the calcification process is complete, contain only chondroitin 6-sulfate. These results that chondroitin 4-sulfate may be an important component for the calcification process, whereas chondroitin 6-sulfate seems to be related to the integrity of the articular surfaces. A chemical defect of chondroitin 6-sulfate in a new mucopolysaccharidosis, characterized by platyspondyly and irregularities of articular surfaces, is in agreement with these results.  相似文献   

2.
1. The distribution chondroitin 4- and 6-sulfates in the epiphysial cartilages of several mammals are reported. 2. Chondroitin 6-sulfate is present in higher relative proportion in articular surfaces of young and adult epiphysial cartilages in most of the mammals studied. 3. Exception to this was found in some species of the order Rodentia in which chondroitin 4-sulfate was almost the only chondroitin present in young and adult cartilages. 4. These and other results suggest that chondroitin 4-sulfate may be an important component for the calcification process, whereas chondroitin 6-sulfate seems to be related to the integrity of the articular surfaces.  相似文献   

3.
Ester sulfate containing glycosaminoglycans comprising approx. 3% of the total glycosaminoglycan content, have been isolated from protease-digested bovine vitreous body by stepwise fractionation on AG-1X2(Cl?) and gel filtration on Bio-Gel P-300. Two heparan sulfate and two chondroitin-4-sulfate fractions were isolated in nearly pure form. The heparan sulfate fractions were undersulfated and contained the same relative proportions of N- and O-sulfate (1 : 2), although the total sulfate content differed by approx. 100%. No chondroitin-6-sulfate was present in the isolates, based on evidence obtained from chondroitin ABC lyase experiments.  相似文献   

4.
The absolute concentrations of chondroitin 4- and 6-sulfate are compared in articular and endochondral ossification cartilage from normal dogs. In newborn dogs, the absolute concentration of chondroitin 4-sulfate decreases nearly 3-fold from the deeper endochondral ossification cartilage to the articular surface, whereas that of chondroitin 6-sulfate does not change. In cartilage from the articular surface of the epiphysis in adults, where the ossification process is complete, the concentration of chondroitin 4-sulfate is also low. These observations suggest that chondroitin 4-sulfate may be important in the ossification process. The pathogenesis of heritable disorders involving the sulfation of chondroitin sulfate is discussed in view of these findings.  相似文献   

5.
The proportions of chondroitin 4 and 6 sulfates of intima + media layers of normal human aortae vary with age. The two isomers are in approximately equal amounts in aortae of young individuals, while the 6-sulfate is more abundant in those of adult individuals. This increase of chondroitin 6-sulfate is even more pronounced for intima + media obtained from atherosclerotic aortae.  相似文献   

6.
The rate of metabolism of low-sulfated chondroitin 4-sulfate, a predominant glycosaminoglycan in blood, has been studied by administering intraperitoneally radioactive hexosamine and/or sulfate to rats. The biological half-life of the material was estimated to be 10–12 h, suggesting that the metabolic process of blood low-sulfated chondroitin sulfate is different from that of glycosaminoglycans in the tissue.  相似文献   

7.
Cartilage regeneration in the adult rabbit ear was examined with respect to glycosaminoglycan (GAG) synthesis at various stages of the regeneration process. Increased hyaluronic acid and chondroitin sulfate synthesis was first seen 31 days after wounding, when a metachromatic cartilage matrix could be distinguished from blastemal cells. Analysis of cartilage and the overlying skin separately showed that 90% of the labeled chondroitin sulfate was found in the cartilage being regenerated. DEAE-cellulose chromatography of GAG preparations from 35-day regenerating cartilages showed hyaluronic acid and chondroitin sulfate peaks eluting in the same position as those isolated from normal cartilages. The identity of the hyaluronic acid and chondroitin sulfate peaks was confirmed by their susceptibility to Streptomyces hyaluronidase and chondroitinase ABC, respectively. Although the degree of sulfation in normal and regenerated cartilages was similar, the ratio of chondroitin 6-sulfate to chondroitin 4-sulfate was increased in regenerated cartilages. GAG preparations from unlabeled cartilages were digested with chondroitinase ABC and the disaccharide digestive products were identified and quantitiated. Normal cartilage had a ΔDi-6SΔDi-4S ratio of 0.27; the same ratio for the regenerated cartilage was 1.58.  相似文献   

8.
The ability of chondrocytes to synthesize chondroitin-4-sulfate (C4S) as opposed to chondroitin-6-sulfate (C6S) is a phylogenetically related phenomenon seen among adult higher vertebrates and developmentally during the embryogenesis of these vertebrates. While the embryonic cartilage may be initially a C6S matrix, C4S synthesis is seen to develop with time. We have histochemically localized these differences in sulfation with the cationic carbocyanine dye, Stains-all, in a spectrum of cartilages that vary in the sulfation position of their chondroitin sulfate. Cartilages from the rat and rabbit that are predominantly C4S stained magenta at pH 4.3, while the C6S-rich cartilage matrices from the regenerating rabbit ear and lamprey cranium stained blue. Embryonic chicken cartilages develop a gradient of magenta matrix with age, with increased concentration toward the articular surface. Both magenta and blue matrices were absent after pretreatment with chondroitinase ABC but were present after Streptomyces hyaluronidase digestion. The magenta staining was a property of the cartilage matrix as a whole, since isolated C4S and C6S stained blue. The differential staining was seen at pH 4.3, but not at pH 8.8, suggesting an interaction between the chondroitin sulfate and the adjacent tissue proteins.  相似文献   

9.
The distribution of sulfated mucopolysaccharides in different tissues during growth and in cancer tissues is reported. It is shown that most of the tissues of 1 day-old rats and rabbits contain chondroitin sulfate A/C, chonroitin sulfate B and heparan sulfate in about the same proportions, whereas in adult animals chondroitin sulfate A/C decreases in concentration or disappears. Changes in the relative proportions of chondroitin sulfate B and heparan sulfate were also observed in most of the tissues. In rats, these changes occur in the first 25 days of extrauterine development. A great increase of chondoitin sulfate A/C was observed in human tumors of different origins when compared with the normal adjacent tissues. Changes in the relative proportions of chondroitin sulfate B and heparan sulfate were also observed in most of the tumors analysed. The possible role of chondroitin sulfate A/C in cell division is discussed in view of the present findings.  相似文献   

10.
11.
The catabolism of 35S-labeled aggrecan and loss of tissue glycosaminoglycans was investigated using bovine articular cartilage explant cultures maintained in medium containing 10(-6) M retinoic acid or 40 ng/ml recombinant human interleukin-1alpha (rHuIL-1alpha) and varying concentrations (1-1000 microg/ml) of sulfated glycosaminoglycans (heparin, heparan sulfate, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate and keratan sulfate) and calcium pentosan polysulfate (10 microg/ml). In addition, the effect of the sulfated glycosaminoglycans and calcium pentosan polysulfate on the degradation of aggrecan by soluble aggrecanase activity present in conditioned medium was investigated. The degradation of 35S-labeled aggrecan and reduction in tissue levels of aggrecan by articular cartilage explant cultures stimulated with retinoic acid or rHuIL-1alpha was inhibited by heparin and heparan sulfate in a dose-dependent manner and by calcium pentosan polysulfate. In contrast, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate and keratan sulfate did not inhibit the degradation of 35S-labeled aggrecan nor suppress the reduction in tissue levels of aggrecan by explant cultures of articular cartilage. Heparin, heparan sulfate and calcium pentosan polysulfate did not adversely affect chondrocyte metabolism as measured by lactate production, incorporation of [35S]-sulfate or [3H]-serine into macromolecules by articular cartilage explant cultures. Furthermore, heparin, heparan sulfate and calcium pentosan polysulfate inhibited the proteolytic degradation of aggrecan by soluble aggrecanase activity. These results suggest that highly sulfated glycosaminoglycans have the potential to influence aggrecan catabolism in articular cartilage and this effect occurs in part through direct inhibition of aggrecanase activity.  相似文献   

12.
Two distinct sulfotransferases (chondroitin 6-sulfotransferase and chondroitin 4-sulfotransferase), which catalyzed transfer of sulfate to position 6 and position 4 of acetylgalactosamine residues of chondroitin, were extracted from epiphyseal cartilage of 14-day-old chick embryos and separated by gel chromatography on Sephacryl S-200 in the presence of 3 M guanidine-HCl. When the enzyme solutions containing 3 M guanidine-HCl were dialyzed against 0.02 M Tris-HCl, pH 7.2, containing 10% glycerol, chondroitin 4-sulfotransferase became almost insoluble, whereas chondroitin 6-sulfotransferase remained soluble. Endogenous acceptors for sulfate transfer were completely removed from both enzyme preparations. Addition of basic proteins and polyamines as well as Mn2+ to the incubation medium caused a stimulation of both sulfotransferases; the stimulation of chondroitin 6-sulfotransferase with these cations was higher than that of chondroitin 4-sulfotransferase. The Km values for 3′-phosphoadenylyl sulfate of both enzymes were much smaller in the presence of protamine or spermine than in the presence of Mn2+. The two sulfotransferases differed in the requirement for sulfhydryl compounds; in the absence of sulfhydryl compounds, the activity of chondroitin 4-sulfotransferase was very low, whereas the activity of chondroitin 6-sulfotransferase was essentially unaffected. These observations indicate that at least two sulfotransferases are involved in the biosynthesis of chondroitin sulfate, and suggest that the production of the isomers of chondroitin sulfate in chondrocytes is affected by various factors such as the intracellular concentration of sulfhydryl compounds and basic substances.  相似文献   

13.
The effect of bound sulfate groups and uronic acid residues of glycosaminoglycans on their behavior in chromatography on hydrophobic gel was examined by the use of several pairs of depolymerized chondroitin, chondroitin 4- or 6-sulfate, and dermatan sulfate having comparable degree of polymerization. Chromatography on Phenyl-Sepharose CL-4B in 4.0-2.0 ammonium sulfate containing 10m hydrochloric acid showed that: (a) The retention of depolymerized chondroitin 4- or 6-sulfate on the gel varies with the temperature, whereas the depolymerized samples of chondroitin and dermatan sulfate does not show a temperature dependence (this is not the case for hyaluronic acid or dextrans). (b) Among depolymerized samples of chondroitin and chondroitin 4- and 6-sulfate that have a similar degree of polymerization, chondroitin 4- and 6-sulfate showed the highest retention. (c) The retention on the gel of chondroitin 6-sulfate, chondroitin 4-sulfate, and dermatan sulfate decreased in this order. The solubility in ammonium sulfate solution of the polysaccharides agreed well with the chromatographic behavior, suggesting that the fractionation by the hydrophobic gel largely depends on the ability to precipitate on the gel rather than on the hydrophobic interaction between gel and polysaccharide.  相似文献   

14.
Summary Monoclonal antibodies directed against specific carbohydrate epitopes on chondroitin 4-/dermatan sulfate, chondroitin 6-sulfate, keratan sulfate, and a monoclonal antibody directed against the hyaluronate binding region were used to characterize proteoglycans extracted from embryonic chick bone marrow. About half of the proteoglycans separate into the high density fraction on a CsCl gradient. Glycosaminoglycan-specific antibodies recognize proteoglycans from all fractions; this includes an antibody directed against keratan sulfate. Some proteoglycans, principally in the high buoyant density fraction, contain sites recognized by the antibody specific for the hyaluronate binding region. Within limits of detection, all core proteins belong to the high-molecular-weight category, with weights in excess of 212 kD. Antibodies directed against chondroitin 4-/dermatan sulfate and against keratan sulfate primarily bind to extracellular matrix material located in the extracellular spaces and to matrix elements in the pericellular regions of fibroblastic stromal cells. The antibody that recognizes chondroitin 6-sulfate binds to sites on surfaces of fibroblastic stromal cells and also to extracellular matrix material. Little or no antibody binding is detected on surfaces of granulocytic cells. These studies indicate that chondroitin sulfate and keratan sulfate chains are both present in the proteoglycan extract.  相似文献   

15.
《Life sciences》1997,60(12):PL201-PL206
Here, we report investigations about the direct effect of glycosaminoglycans, such as dermatan sulfate, chondroitin 4- and 6-sulfate upon cAMP-dependent protein kinase activity. The results indicate that glycosaminoglycans strongly influence the phosphorylation activity of this enzyme against histone type IIa and [Val6,Ala7]-kemptide. While chondroitin 4-sulfate and dermatan sulfate exhibit inhibitory effects, chondroitin 6-sulfate shows a stimulating effect. In addition, the chondroitin 6-sulfate is also able to reduce the chondroitin 4-sulfate and dermatan sulfate specific inhibition.  相似文献   

16.
A soluble enzyme from quail oviduct which incorporates sulfate into position 6 of the nonreducing N-acetylgalactosamine 4-sulfate end group of chondroitin sulfate has been purified. This enzyme (termed "terminal 6-sulfotransferase") was partially separated from a 6-sulfotransferase present in the same tissue which catalyzes the incorporation of sulfate into interior portion of unsulfated chondroitin. The basic requirements for the terminal 6-sulfotransferase reaction were shown to be 3'-phosphoadenylyl sulfate (donor) and chondroitin 4-sulfate (acceptor). The substitution of unsulfated chondroitin (prepared from squid skin) for chondroitin 4-sulfate resulted in a total loss of activity. These results suggest that the organization of the proteoglycan-synthesizing apparatus may well involve hitherto unrecognized mechanisms for the sulfation of chondroitin chains.  相似文献   

17.
The glycosaminoglycan content in pus from patients with purulent pleurisy was studied. The uronic acid content rose in the first 4 hospital days, continued at a high level during hospital days 5-8, and then fell to a low level after 9 hospital days. Four glycosaminoglycans were isolated from the preparation; they were identified as hyaluronic acid, chondroitin 4-sulfate, chondroitin 6-sulfate, and dermatan sulfate. Hyaluronic acid was the main component and its relative proportion increased with increasing hospital days. The relative proportions of chondroitin 4-sulfate and chondroitin 6-sulfate were low during the first 4 day and during Days 10-21, whereas they were high during Days 5-9. The proportion of dermatan sulfate was high during the early hospital days, and thereafter decreased with increasing hospital days.  相似文献   

18.
Proteoglycan monomer (D1) and aggregate (A1) preparations were isolated from 4 M guanidinium chloride extracts of the Swarm rat chondrosarcoma. When EDTA, 6-aminohexanoic acid, and benzamidine were present in the solutions, the D1 preparation contained a single component (SO = 23 S), and the A1 preparation contained 30% monomer (SO = 23 S) and 70 percent aggregate (SO = 111 S). In the absence of EDTA, 6-aminohexanoic acid, and benzamidine, the A1 preparations contained only small proteoglycan fragments, indicating that extensive enzymatic degradation had occurred. The composition of the proteoglycan monomer was different from that of proteoglycan monomer preparations from normal hyaline cartilages in that it did not contain keratan sulfate and chondroitin 6-sulfate; only chondroitin 4-sulfate was found. The A1 preparation from the chondrosarcoma contained only one link protein, which was like the smaller (molecular weight of 40,000) of the two link proteins present in A1 preparations from bovine nasal cartilage. When the A1 preparation from the chondrosarcoma was treated with chondroitinase ABC and trypsin and the digest was chromatographed on Sepharose 2B, a complex was isolated which contained the link protein and the segments of the protein core from the hyaluronic acid-binding region of the proteoglycan molecules.  相似文献   

19.
We compared the glycosaminoglycan content of human venous and arterial walls. The most abundant glycosaminoglycan in human veins is dermatan sulfate whereas chondroitin 4/6-sulfate is preponderant in arteries. The concentrations of chondroitin 4/6-sulfate and heparan sulfate are approximately 4.8- and approximately 2.5-fold higher in arteries than in veins whereas dermatan sulfate contents are similar in the two types of blood vessels. Normal and varicose saphenous veins do not differ in their glycosaminoglycan contents. It is known that certain glycosaminoglycan species from the arterial wall, mainly high-molecular-weight fractions of dermatan sulfate+chondroitin 4/6-sulfate have greater affinity for plasma LDL. These types of glycosaminoglycans can be identified on a LDL-affinity column. We now demonstrated that a similar population of glycosaminoglycan also occurs in veins, although with a lower concentration than in the arteries due to less chondroitin 4/6-sulfate with affinity for LDL. The concentrations of dermatan sulfate species, which interact with LDL, are similar in arteries and veins. The presence of these glycosaminoglycans with affinity to plasma LDL in veins raises interesting questions concerning the role of these molecules in the pathogenesis of atherosclerosis. Possibly, the presence of these glycosaminoglycans in the vessel wall are not sufficient to cause retention of LDL and consequently endothelial dysfunction, but may require additional intrinsic factors and/or the hydrodynamic of the blood under the arterial pressure.  相似文献   

20.
Selective hydrolysis of chondroitin sulfates by hyaluronidase   总被引:4,自引:0,他引:4  
Chondroitin 4-sulfate and chondroitin 6-sulfate were incubated with testicular hyaluronidase in the presence of excess beta-glucuronidase. The beta-glucuronidase caused rapid removal of the nonreducing terminal beta-D-glucuronosyl residues from the oligosaccharides formed by the action of the hyaluronidase, destroying the oligosaccharide acceptors required for the transglycosylation activity of hyaluronidase and releasing free D-glucuronic acid at a rate that was equal to the rate of the hyaluronidase-catalyzed hydrolysis. When hyaluronidase was assayed at 37 degrees C in the presence of 0.05 M NaCl, 0.05 M Na2SO4, and 0.1 M sodium acetate at pH 5, chondroitin 4-sulfate was hydrolyzed at 1.5 times the rate found for chondroitin 6-sulfate. When hyaluronidase was assayed at 45 degrees C in 0.06 M sodium acetate at pH 6, chondroitin 4-sulfate was hydrolyzed at 8 times the rate observed for chondroitin 6-sulfate. Under the pH5 conditions, the chondroitin 4-sulfate was converted to a mixture of tri- and pentasaccharides, while the chondroitin 6-sulfate was converted primarily to a mixture of penta- and heptasaccharides, with only a small amount of trisaccharide. Under the pH 6 conditions, the chondroitin 4-sulfate was converted to a mixture of penta- and heptasaccharides, with only a small amount of trisaccharide, but the products from chondroitin 6-sulfate were a mixture of oligosaccharides ranging in degree of polymerization from 7 to 25 monosaccharides per oligosaccharide. End-group analyses of the products formed at pH 6 showed that both substrates were cleaved preferentially at the glycosidic bonds of the 4-sulfated disaccharides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号