首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethylene is a plant hormone that regulates many aspects of growth and development. Despite the well-known association between ethylene and stress signalling, its effects on stomatal movements are largely unexplored. Here, genetic and physiological data are provided that position ethylene into the Arabidopsis guard cell signalling network, and demonstrate a functional link between ethylene and hydrogen peroxide (H(2)O(2)). In wild-type leaves, ethylene induces stomatal closure that is dependent on H(2)O(2) production in guard cells, generated by the nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase AtrbohF. Ethylene-induced closure is inhibited by the ethylene antagonists 1-MCP and silver. The ethylene receptor mutants etr1-1 and etr1-3 are insensitive to ethylene in terms of stomatal closure and H(2)O(2) production. Stomata of the ethylene signalling ein2-1 and arr2 mutants do not close in response to either ethylene or H(2)O(2) but do generate H(2)O(2) following ethylene challenge. Thus, the data indicate that ethylene and H(2)O(2) signalling in guard cells are mediated by ETR1 via EIN2 and ARR2-dependent pathway(s), and identify AtrbohF as a key mediator of stomatal responses to ethylene.  相似文献   

2.
Abscisic acid (ABA)-induced stomatal closure is mediated by a complex, guard cell signalling network involving nitric oxide (NO) as a key intermediate. However, there is a lack of information concerning the role of NO in the ABA-enhanced stomatal closure seen in dehydrated plants. The data herein demonstrate that, while nitrate reductase (NR)1-mediated NO generation is required for the ABA-induced closure of stomata in turgid leaves, it is not required for ABA-enhanced stomatal closure under conditions leading to rapid dehydration. The results also show that NO signalling in the guard cells of turgid leaves requires the ABA-signalling pathway to be both capable of function and active. The alignment of this NO signalling with guard cell Ca2+-dependent/independent ABA signalling is discussed. The data also highlight a physiological role for NO signalling in turgid leaves and show that stomatal closure during the light-to-dark transition requires NR1-mediated NO generation and signalling.  相似文献   

3.
Reduced stomatal conductance (gs) during soil drought in angiosperms may result from effects of leaf turgor on stomata and/or factors that do not directly depend on leaf turgor, including root‐derived abscisic acid (ABA) signals. To quantify the roles of leaf turgor‐mediated and leaf turgor‐independent mechanisms in gs decline during drought, we measured drought responses of gs and water relations in three woody species (almond, grapevine and olive) under a range of conditions designed to generate independent variation in leaf and root turgor, including diurnal variation in evaporative demand and changes in plant hydraulic conductance and leaf osmotic pressure. We then applied these data to a process‐based gs model and used a novel method to partition observed declines in gs during drought into contributions from each parameter in the model. Soil drought reduced gs by 63–84% across species, and the model reproduced these changes well (r2 = 0.91, P < 0.0001, n = 44) despite having only a single fitted parameter. Our analysis concluded that responses mediated by leaf turgor could explain over 87% of the observed decline in gs across species, adding to a growing body of evidence that challenges the root ABA‐centric model of stomatal responses to drought.  相似文献   

4.
There is much interest in the transduction pathways by which abscisic acid (ABA) regulates stomatal movements (ABA-turgor signalling) and by which this phytohormone regulates the pattern of gene expression in plant cells (ABA-nuclear signalling). A number of second messengers have been identified in both the ABA-turgor and ABA-nuclear signalling pathways. A major challenge is to understand the architecture of ABA-signalling pathways and to determine how the ABA signal is coupled to the appropriate response. We have investigated whether separate Ca2+-dependent and -independent ABA-signalling pathways are present in guard cells. Our data suggest that increases in [Ca2+]i are a common component of the guard cell ABA-turgor and ABA-nuclear signalling pathways. The effects of Ca2+ antagonists on ABA-induced stomatal closure and the ABA-responsive CDeT6-19 gene promoter suggest that Ca2+ is involved in both ABA-turgor signalling and ABA-nuclear signalling in guard cells. However, the sensitivity of these pathways to alterations in the external calcium concentration differ, suggesting that the ABA-nuclear and ABA-turgor signalling pathways are not completely convergent. Our data suggest that whilst Ca2+-independent signalling elements are present in the guard cell, they do not form a completely separate Ca2+-independent ABA-signalling pathway.  相似文献   

5.
The role of peristomatal transpiration in the mechanism of stomatal movement   总被引:12,自引:4,他引:8  
Abstract. Peristomatal transpiration is defined as the relative high local rate of cuticular water loss from external and internal surfaces around the stomatal pore and its decisive role in the control of stomatal movement is re-emphasized. As the resistance towards changes in air humidity is low in the pore surroundings, the state of turgor is particularly unsteady there. Due to the inherent instability the guard cell 'senses' fluctuations in the supply-demand relationship of water and is thus the control unit proper. The environmental variables (supply and demand) are cross-correlated within the subsidiary cell and the information is transmitted to the guard cell through the water potential gradient between the two cells. A conceptual segregation of a 'humidity response' by 'passive' stomatal movements is rejected.
As ions always accumulate at the most distant point of the liquid path and as this point varies with pore width according to the prevailing water potential gradients, it is felt that the water stream is causing the characteristic pattern of ion distribution within the epidermis. Passive import of ions is attributed to local concentration gradients which are steepened by continuous supply and by water uptake into the guard cell in response to starch hydrolysis. A mechanistic model supplements the discussion.  相似文献   

6.
Current concepts on the role of potassium in stomatal movements   总被引:3,自引:0,他引:3  
A stoma opens when the surrounding guard cell pair increases in turgidity. The increase results from active accumulation of potassium in the guard cell vacuole. The intracellular compartmentation of potassium evokes compensatory accumulation of a yet-unidentified solute in the guard cell cytoplasm. The source of potassium is other epidermal cells; this indicates that stomatal movements in situ are under control of these cells also. Presumably, guard cell potassium uptake, which is from the apoplast, is mediated by a proton -extruding ATPase on the guard cell plasmalemma. The energy source is. oxidative phosphorylation and, to a lesser extent, photosynthetic electron transport. Except for high flux capacity and different responses to applied chemicals, potassium uptake by guard cells is similar to potassium uptake by other plant cells.  相似文献   

7.
Nitric oxide, stomatal closure, and abiotic stress   总被引:12,自引:1,他引:11  
Various data indicate that nitric oxide (NO) is an endogenoussignal in plants that mediates responses to several stimuli.Experimental evidence in support of such signalling roles forNO has been obtained via the application of NO, usually in theform of NO donors, via the measurement of endogenous NO, andthrough the manipulation of endogenous NO content by chemicaland genetic means. Stomatal closure, initiated by abscisic acid(ABA), is effected through a complex symphony of intracellularsignalling in which NO appears to be one component. ExogenousNO induces stomatal closure, ABA triggers NO generation, removalof NO by scavengers inhibits stomatal closure in response toABA, and ABA-induced stomatal closure is reduced in mutantsthat are impaired in NO generation. The data indicate that ABA-inducedguard cell NO generation requires both nitric oxide synthase-likeactivity and, in Arabidopsis, the NIA1 isoform of nitrate reductase(NR). NO stimulates mitogen-activated protein kinase (MAPK)activity and cGMP production. Both these NO-stimulated eventsare required for ABA-induced stomatal closure. ABA also stimulatesthe generation of H2O2 in guard cells, and pharmacological andgenetic data demonstrate that NO accumulation in these cellsis dependent on such production. Recent data have extended thismodel to maize mesophyll cells where the induction of antioxidantdefences by water stress and ABA required the generation ofH2O2 and NO and the activation of a MAPK. Published data suggestthat drought and salinity induce NO generation which activatescellular processes that afford some protection against the oxidativestress associated with these conditions. Exogenous NO can alsoprotect cells against oxidative stress. Thus, the data suggestan emerging model of stress responses in which ABA has severalameliorative functions. These include the rapid induction ofstomatal closure to reduce transpirational water loss and theactivation of antioxidant defences to combat oxidative stress.These are two processes that both involve NO as a key signallingintermediate. Key words: Abscisic acid, antioxidants, guard cells, hydrogen peroxide, nitric oxide, oxidative stress, stomata, water stress Received 19 June 2007; Revised 21 September 2007 Accepted 5 November 2007  相似文献   

8.
The role of the mesophyll in stomatal responses to light and CO2   总被引:1,自引:0,他引:1  
Stomatal responses to light and CO2 were investigated using isolated epidermes of Tradescantia pallida , Vicia faba and Pisum sativum . Stomata in leaves of T. pallida and P. sativum responded to light and CO2, but those from V. faba did not. Stomata in isolated epidermes of all three species could be opened on KCl solutions, but they showed no response to light or CO2. However, when isolated epidermes of T. pallida and P. sativum were placed on an exposed mesophyll from a leaf of the same species or a different species, they regained responsiveness to light and CO2. Stomatal responses in these epidermes were similar to those in leaves in that they responded rapidly and reversibly to changes in light and CO2. Epidermes from V. faba did not respond to light or CO2 when placed on mesophyll from any of the three species. Experiments with single optic fibres suggest that stomata were being regulated via signals from the mesophyll produced in response to light and CO2 rather than being sensitized to light and CO2 by the mesophyll. The data suggest that most of the stomatal response to CO2 and light occurs in response to a signal generated by the mesophyll.  相似文献   

9.
The plant hormone abscisic acid (ABA) plays a central role in the regulation of stomatal movements under water-deficit conditions. The identification of ABA receptors and the ABA signaling core consisting of PYR/PYL/RCAR ABA receptors, PP2C protein phosphatases and SnRK2 protein kinases has led to studies that have greatly advanced our knowledge of the molecular mechanisms mediating ABA-induced stomatal closure in the past decade. This review focuses on recent progress in illuminating the regulatory mechanisms of ABA signal transduction, and the physiological importance of basal ABA signaling in stomatal regulation by CO2 and, as hypothesized here, vapor-pressure deficit. Furthermore, advances in understanding the interactions of ABA and other stomatal signaling pathways are reviewed here. We also review recent studies investigating the use of ABA signaling mechanisms for the manipulation of stomatal conductance and the enhancement of drought tolerance and water-use efficiency of plants.  相似文献   

10.
Abscisic acid (ABA) raised the cytosolic pH and nitric oxide (NO) levels in guard cells while inducing stomatal closure in epidermis of Pisum sativum. Butyrate (a weak acid) reduced the cytosolic pH/NO production and prevented stomatal closure by ABA. Methylamine (a weak base) enhanced the cytosolic alkalinization and aggravated stomatal closure by ABA. The rise in guard cell pH because of ABA became noticeable after 6 min and peaked at 12 min, while NO production started at 9 min and peaked at 18 min. These results suggested that NO production was downstream of the rise in cytosolic pH. The ABA-induced increase in NO of guard cells and stomatal closure was prevented by 2-phenyl-4,4,5,5-tetramethyl imidazoline-1-oxyl 3-oxide (cPTIO, a NO scavenger) and partially by N-nitro-L-Arg-methyl ester (L-NAME, an inhibitor of NO synthase). In contrast, cPTIO or L-NAME had only a marginal effect on the pH rise induced by ABA. Ethylene glycol tetraacetic acid (EGTA, a calcium chelator) prevented ABA-induced stomatal closure while restricting cytosolic pH rise and NO production. We suggest that during ABA-induced stomatal closure, a rise in cytosolic pH is necessary for NO production. Calcium may act upstream of cytosolic alkalinization and NO production, besides its known function as a downstream component.  相似文献   

11.
A hydromechanical and biochemical model of stomatal conductance   总被引:16,自引:1,他引:16  
A mathematical model of stomatal conductance is presented. It is based on whole‐plant and epidermal hydromechanics, and on two hypotheses: (1) the osmotic gradient across guard cell membranes is proportional to the concentration of ATP in the guard cells; and (2) the osmotic gradient that can be sustained per unit of ATP is proportional to the turgor pressure of adjacent epidermal cells. In the present study, guard cell [ATP] is calculated using a previously published model that is based on a widely used biochemical model of C3 mesophyll photosynthesis. The conductance model for Vicia faba L. is parameterized and tested As with most other stomatal models, the present model correctly predicts the stomatal responses to variations in transpiration rate, irradiance and intercellular CO2. Unlike most other models, however, this model can predict the transient stomatal opening often observed before conductance declines in response to decreases in humidity, soil water potential, or xylem conductance. The model also explicitly accommodates the mechanical advantage of the epidermis and correctly predicts that stomata are relatively insensitive to the ambient partial pressure of oxygen, as a result of the assumed dependence on ATP concentration.  相似文献   

12.
We examined the stomatal response to leaf excision in an evergreen woody shrub, Photinia x fraseri, using a novel combination of gas exchange, traditional water relations and modelling. Plants were kept outdoors in mild winter conditions (average daily temperature range: -1 to 12 degrees C) before being transferred to a glasshouse (temperature range: 20-30 degrees C) and allowed to acclimate for different periods before experiments. 'Glasshouse plants' were acclimated for at least 9 d, and 'outdoor plants' were acclimated for fewer than 3 d before laboratory gas exchange experiments. The transient stomatal opening response to leaf excision was roughly twice as long in outdoor plants as in glasshouse plants. To elucidate the reason for this difference, we inferred variables of stomatal water relations (epidermal and guard cell turgor pressures and guard cell osmotic pressure: Pe, Pg and pi g, respectively) from stomatal conductance (gs) and bulk leaf water potential (psi l), using a hydromechanical model of gs. psi l was calculated from cumulative post-excision transpirational water loss using empirical relationships between psi l and relative water content obtained on similar leaves. Inferred Pg and Pe both declined immediately after leaf excision. Inferred pi g also declined after a lag period. The kinetics of pi g adjustment after the lag were similar in outdoors and glasshouse plants, but the lag period was much longer in outdoor plants. This suggests that the longer transient opening response in outdoor plants resulted from slower induction, not slower execution, of guard cell osmoregulation. We discuss the implications of our results for the mechanism of short-term stomatal responses to hydraulic perturbations, for dynamic modelling of gs and for leaf water status regulation.  相似文献   

13.
ROP GTPases function as molecular switches in diverse cellular processes. Previously, we showed that ROP2 GTPase is activated upon light irradiation, and thereby negatively regulates light-induced stomatal opening. Here we studied the role of ROP2 during stomatal closure. The expression of a constitutively active form of ROP2 (CA-rop2) in Arabidopsis thaliana and Vicia faba resulted in slower and reduced stomatal closure in response to abscisic acid (ABA) and CO(2) . In contrast, the expression of a dominant-negative form of ROP2 (DN-rop2) and the knockout mutation of ROP2 (rop2 KO) promoted ABA-induced stomatal closure in Arabidopsis. As early as 10 min after ABA treatment, ROP2 was inactivated and translocated to the cytoplasm of the stomatal guard cells. To elucidate the mechanism by which active ROP2 suppresses stomatal closure, we monitored endocytotic membrane trafficking, which is regulated by Rho GTPases in animal cells. We found that the endocytosis of plasma membrane (PM), as tracked by FM4-64, was lower in CA-rop2-expressing guard cells than in those of wild-type plants, which suggests that active ROP2 suppresses the endocytotic internalization of PM, a process required for stomatal closure. Together, our results suggest that ROP2 is inactivated by ABA, and that this inactivation is required for the timely stomatal closure.  相似文献   

14.
Stomatal opening and closing are driven by ion fluxes that cause changes in guard cell turgor and volume. This process is, in turn, regulated by environmental and hormonal signals, including light and the phytohormone abscisic acid (ABA). Here, we present genetic evidence that expression of PHO1 in guard cells of Arabidopsis thaliana is required for full stomatal responses to ABA. PHO1 is involved in the export of phosphate into the root xylem vessels and, as a result, the pho1 mutant is characterized by low shoot phosphate levels. In leaves, PHO1 was found expressed in guard cells and up‐regulated following treatment with ABA. The pho1 mutant was unaffected in production of reactive oxygen species following ABA treatment, and in stomatal movements in response to light cues, high extracellular calcium, auxin, and fusicoccin. However, stomatal movements in response to ABA treatment were severely impaired, both in terms of induction of closure and inhibition of opening. Micro‐grafting a pho1 shoot scion onto wild‐type rootstock resulted in plants with normal shoot growth and phosphate content, but failed to restore normal stomatal response to ABA treatment. PHO1 knockdown using RNA interference specifically in guard cells of wild‐type plants caused a reduced stomatal response to ABA. In agreement, specific expression of PHO1 in guard cells of pho1 plants complemented the mutant guard cell phenotype and re‐established ABA sensitivity, although full functional complementation was dependent on shoot phosphate sufficiency. Together, these data reveal an important role for phosphate and the action of PHO1 in the stomatal response to ABA.  相似文献   

15.
Nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) are key signalling molecules produced in response to various stimuli and involved in a diverse range of plant signal transduction processes. Nitric oxide and H(2)O(2) have been identified as essential components of the complex signalling network inducing stomatal closure in response to the phytohormone abscisic acid (ABA). A close inter-relationship exists between ABA and the spatial and temporal production and action of both NO and H(2)O(2) in guard cells. This study shows that, in Arabidopsis thaliana guard cells, ABA-mediated NO generation is in fact dependent on ABA-induced H(2)O(2) production. Stomatal closure induced by H(2)O(2) is inhibited by the removal of NO with NO scavenger, and both ABA and H(2)O(2) stimulate guard cell NO synthesis. Conversely, NO-induced stomatal closure does not require H(2)O(2) synthesis nor does NO treatment induce H(2)O(2) production in guard cells. Tungstate inhibition of the NO-generating enzyme nitrate reductase (NR) attenuates NO production in response to nitrite in vitro and in response to H(2)O(2) and ABA in vivo. Genetic data demonstrate that NR is the major source of NO in guard cells in response to ABA-mediated H(2)O(2) synthesis. In the NR double mutant nia1, nia2 both ABA and H(2)O(2) fail to induce NO production or stomatal closure, but in the nitric oxide synthase deficient Atnos1 mutant, responses to H(2)O(2) are not impaired. Importantly, we show that in the NADPH oxidase deficient double mutant atrbohD/F, NO synthesis and stomatal closure to ABA are severely reduced, indicating that endogenous H(2)O(2) production induced by ABA is required for NO synthesis. In summary, our physiological and genetic data demonstrate a strong inter-relationship between ABA, endogenous H(2)O(2) and NO-induced stomatal closure.  相似文献   

16.
Elevated atmospheric ozone concentrations (70 ppb) reduced the sensitivity of stomatal closure to abscisic acid (ABA) in Leontodon hispidus after at least 24 h exposure (1) when detached leaves were fed ABA, and (2) when intact plants were sprayed or injected with ABA. They also reduced the sensitivity of stomatal closure to soil drying around the roots. Such effects could already be occurring under current northern hemisphere peak ambient ozone concentrations. Leaves detached from plants which had been exposed to elevated ozone concentrations generated higher concentrations of ethylene, although leaf tissue ABA concentrations were unaffected. When intact plants were pretreated with the ethylene receptor binding antagonist 1-methylcyclopropene, the stomatal response to both applied ABA and soil drying was fully restored in the presence of elevated ozone. Implications of ethylene's antagonism of the stomatal response to ABA under oxidative stress are discussed. We suggest that this may be one mechanism whereby elevated ozone induces visible injury in sensitive species. We emphasize that drought linked to climate change and tropospheric ozone pollution, are both escalating problems. Ozone will exacerbate the deleterious effects of drought on the many plant species including valuable crops that respond to this pollutant by emitting more ethylene.  相似文献   

17.
Brassinosteroids (BRs) are essential for plant growth and development; however, their roles in the regulation of stomatal opening or closure remain obscure. Here, the mechanism underlying BR‐induced stomatal movements is studied. The effects of 24‐epibrassinolide (EBR) on the stomatal apertures of tomato (Solanum lycopersicum) were measured by light microscopy using epidermal strips of wild type (WT), the abscisic acid (ABA)‐deficient notabilis (not) mutant, and plants silenced for SlBRI1, SlRBOH1 and SlGSH1. EBR induced stomatal opening within an appropriate range of concentrations, whereas high concentrations of EBR induced stomatal closure. EBR‐induced stomatal movements were closely related to dynamic changes in H2O2 and redox status in guard cells. The stomata of SlRBOH1‐silenced plants showed a significant loss of sensitivity to EBR. However, ABA deficiency abolished EBR‐induced stomatal closure but did not affect EBR‐induced stomatal opening. Silencing of SlGSH1, the critical gene involved in glutathione biosynthesis, disrupted glutathione redox homeostasis and abolished EBR‐induced stomatal opening. The results suggest that transient H2O2 production is essential for poising the cellular redox status of glutathione, which plays an important role in BR‐induced stomatal opening. However, a prolonged increase in H2O2 facilitated ABA signalling and stomatal closure.  相似文献   

18.
Stomata are light‐activated biological valves in the otherwise gas‐impermeable epidermis of aerial organs of higher plants. Stomata often regulate rates of photosynthesis and transpiration in ways that optimize whole‐plant carbon gain against water loss. Each stoma is flanked by a pair of opposing guard cells. Stomatal opening occurs by light‐activated increases in the turgor pressure of guard cells, which causes them to change shape so that the stomatal pore between them widens. These increases in turgor pressure oppose increases in cellular osmotic pressure that result from uptake of K+. K+ uptake occurs by a chemiosmotic mechanism in response to light‐activated extrusion of H+ outward across the plasma membrane of the guard cell. The initial changes in cellular membrane potential lead to the opening of inward‐rectifying K+ channels, after which K+ is taken up along its electrochemical gradient. Changes in membrane potential resulting from K+ uptake may be balanced by accumulation of Cl?ions by guard cells and/or by synthesis of malic acid within each cell. Malic acid also acts to buffer increases in cytosolic pH caused by H+ extrusion. This review describes how the application of patch‐clamp technology to guard cell protoplasts has enabled investigators to elucidate the mechanisms by which H+ is extruded from guard cells, the types of ion channels present in the guard cell plasma membrane, how those ion channels are regulated, and the signal transduction processes that trigger stomatal opening and closing.  相似文献   

19.
20.
Genetic variants for abscisic acid (ABA) sensitivity are important for investigating the role of ABA sensitivity in conditioning plant response to environmental stress, and especially to those soil conditions that may elicit a root-mediated hormonal signal. This study was performed in order to isolate variation in ABA sensitivity among wheat (Triticum aestivum and T. durum) cultivars, as characterized by two plant responses: (i) shoot growth reduction in response to 5×10?2mol m?3 ABA (racemic) in the root medium of hydroponically grown plants, and (ii) changes in transpiration and gas exchange in a bioassay of detached leaves (leaflaminac) infused with 10?4mol m?3 ABA. Very significant (P≤0.01) and repeatable differences were found among 36 wheat cultivars and 19 landraces in the growth rate in ABA-containing nutrient solutions, expressed as a percentage of the growth rate in control nutrient solutions (ABA/control ratio). In duplicate experiments, the ABA/control ratio ranged between 60 and 83% for the least sensitive cultivars (V2151-3, Bethlehem, K1056 and Sunstar) and between 9 and 19% for the most sensitive cultivars (Sundor, Comet, Barkaec and V5). In the transpiration bioassay, performed with seven selected cultivars, it was found that the reductions in transpiration of ABA-infused leaves corresponded very well with the reductions in growth in response to ABA in the root media. Measurement of gas exchange in the detached leaves of two cultivars differing in ABA sensitivity (Bethlehem and Sundor) showed that variable ABA sensitivity was expressed very well in the stomatal conductance, carbon exchange rate (CER) and photosynthetic capacity (CER/Ci ratio) of the leaf. These results therefore allowed us to isolate wheat variants for ABA sensitivity and to conclude that, while ABA sensitivity is expressed in the growth of plants challenged by ABA in the root medium, the control of sensitivity resides, at least partly, in the leaf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号