首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A membrane-bound glutathione peroxidase-like activity has been detected in liver and cardiac mitochondrial membrane. This enzyme activity differs from the cytosol and mitochondrial matrix selenium-dependent glutathione peroxidase in that it is membrane bound, sensitive to sonication and triton-X-100, and is unaffected by prolonged feeding of a selenium-free diet. This mitochondrial membrane-bound enzyme activity differs from the glutathione-S-transferases which exhibit glutathione peroxidase activity in that it is capable of utilizing both cumene hydroperoxide and hydrogen peroxide as substrates. Digitonin fractionation studies indicate that this enzyme is not located in either inner or outer mitochondrial membrane but rather within inter-membrane space. This newly described membrane-bound enzyme activity may play an important role in the maintenance of cardiac mitochondrial integrity in that mitochondrial matrix does not contain glutathione peroxidase.  相似文献   

2.
3.
4.
1. The localization of monoamine oxidase in the mitochondrial outer membrane was studied in preparations of human liver mitochondrial and brain-cortex non-synaptosomal and synaptosomal mitochondria. 2. Immunochemical accessibility in iso-osmotic and hypo-osmotic mitochondrial preparations was used to localize the enzyme. 3. It was shown that the immunochemically accessible tyramine-oxidizing activity was distributed approximately equally on both surfaces of the membrane in human liver and brain-cortex non-synaptosomal mitochondria. However, the immunochemically accessible beta-phenethylamine-oxidizing activity was situated predominantly on the outer surface, and the immunochemically accessible 5-hydroxytryptamine-oxidizing activity was situated predominantly on the inner surface of the mitochondrial outer membrane in liver and brain-cortex non-synaptosomal mitochondrial preparations. 4. Considerable variation in the distribution of the enzyme in preparations of synaptosomal mitochondria was seen. 5. The simplest model consistent with our observations is that, in liver and brain-cortex non-synaptosomal mitochondria, the tyramine-oxidizing activity is distributed on both sides of the mitochondrial outer membrane, the beta-phenethylamine-oxidizing activity is located on the outer surface of the outer membrane and the 5-hydroxytryptamine-oxidizing activity is located on the inner surface of the mitochondria outer membrane.  相似文献   

5.
Exit from the cell cycle is essential for cells to initiate a terminal differentiation program during development, but what controls this transition is incompletely understood. In this paper, we demonstrate a regulatory link between mitochondrial fission activity and cell cycle exit in follicle cell layer development during Drosophila melanogaster oogenesis. Posterior-localized clonal cells in the follicle cell layer of developing ovarioles with down-regulated expression of the major mitochondrial fission protein DRP1 had mitochondrial elements extensively fused instead of being dispersed. These cells did not exit the cell cycle. Instead, they excessively proliferated, failed to activate Notch for differentiation, and exhibited downstream developmental defects. Reintroduction of mitochondrial fission activity or inhibition of the mitochondrial fusion protein Marf-1 in posterior-localized DRP1-null clones reversed the block in Notch-dependent differentiation. When DRP1-driven mitochondrial fission activity was unopposed by fusion activity in Marf-1-depleted clones, premature cell differentiation of follicle cells occurred in mitotic stages. Thus, DRP1-dependent mitochondrial fission activity is a novel regulator of the onset of follicle cell differentiation during Drosophila oogenesis.  相似文献   

6.
We have mapped a gene in the mitochondrial DNA of Candida (Torulopsis) glabrata and shown that it is required for 5' end maturation of mitochondrial tRNAs. It is located between the tRNAfMet and tRNAPro genes, the same tRNA genes that flank the mitochondrial RNase P RNA gene in the yeast Saccharomyces cerevisiae. The gene is extremely AT rich and codes for AU-rich RNAs that display some sequence homology with the mitochondrial RNase P RNA from S. cerevisiae, including two regions of striking sequence homology between the mitochondrial RNAs and the bacterial RNase P RNAs. RNase P activity that is sensitive to micrococcal nuclease has been detected in mitochondrial extracts of C. glabrata. An RNA of 227 nucleotides that is one of the RNAs encoded by the gene that we mapped cofractionated with this mitochondrial RNase P activity on glycerol gradients. The nuclease sensitivity of the activity, the cofractionation of the RNA with activity, and the homology of the RNA with known RNase P RNAs lead us to propose that the 227-nucleotide RNA is the RNA subunit of the C. glabrata mitochondrial RNase P enzyme.  相似文献   

7.
We have previously shown that mitochondrial activity is an important regulator of myoblast differentiation, partly through processes targeting myogenin expression. Here, we investigated the possible involvement of c-myc in these processes. Inhibition of mitochondrial activity by chloramphenicol abrogated the decrease in c-myc mRNA and protein levels occurring at the onset of terminal differentiation. Conversely, stimulation of mitochondrial activity by overexpression of the T3 mitochondrial receptor (p43) down-regulated c-myc expression. In addition, c-myc overexpression mimicked the influence of mitochondrial activity inhibition on myoblast differentiation. Moreover, like chloramphenicol, c-myc overexpression strongly inhibited the myogenic influence of p43 overexpression. These data suggest that c-Myc is an important target of mitochondrial activity involved in the myogenic influence of the organelle. Lastly, we found that chloramphenicol influence is negatively related to the frequency of post-mitotic myoblasts in the culture at the onset of treatment, and cell cycle analyses demonstrated that the frequency of myoblasts in G0-G1 phase at cell confluence is increased by p43 overexpression and decreased by chloramphenicol or c-myc overexpression. These results suggest that irreversible myoblast withdrawal from the cell cycle is a target of mitochondrial activity by control of c-Myc expression.  相似文献   

8.
Mitochondria and neuronal activity   总被引:4,自引:0,他引:4  
  相似文献   

9.
10.
Mitochondrial function and alzheimer's disease   总被引:3,自引:0,他引:3  
The brain is highly dependent on aerobic metabolism. Normal mitochondrial function is therefore likely to play a critical role in neuronal function and integrity. Defects in the mitochondrial oxidative phosphorylation pathway (OXPHOS) have been demonstrated in aging human tissue including brain. It is not clear whether underlying mitochondrial DNA mutations are responsible for the observed functional defects. The previously reported OXPHOS defects, in particular reduced cytochrome c oxidase activity, in Alzheimer's disease (AD) are not likely to be due to specific enzyme dysfunction. The falloff in cytochrome c oxidase activity in AD brains is more likely to be related to a global decline in mitochondrial activity manifested by downregulation in mitochondrial number. It is not definitely established where the observed mitochondrial changes are placed in the AD cascade. A number of factors might contribute to the observed changes in OXPHOS function including mitochondrial transport through axonal and dendritic processes, compromised regulatory feedback mechanisms responsible for individual complex-subunit synthesis, and complex assembly.  相似文献   

11.
Structurally intact rat liver mitoplasts free of detectable microsomal contamination contain enzymatic activity to metabolize aflatoxin B1 (AFB1). The activated component(s) bind to mitochondrial macromolecules and also inhibit mitochondrial protein synthesis. The activity of intact mitoplasts or sonicated particles is partly dependent on the addition of NADPH-generating system. Under optimal conditions, the mitochondrial enzyme has specific activity of 60 to 65 pmol/mg and represents about 15 to 18% of total cytoplasmic activity for AFB1 activation. The enzyme is localized in the soluble fraction of mitochondrial matrix and appears to be distinctly different from the microsomal activity.  相似文献   

12.
13.
The yeast mitochondrial degradosome (mtEXO) is an NTP-dependent exoribonuclease involved in mitochondrial RNA metabolism. Previous purifications suggested that it was composed of three subunits. Our results suggest that the degradosome is composed of only two large subunits: an RNase and a RNA helicase encoded by nuclear genes DSS1 and SUV3, respectively, and that it co-purifies with mitochondrial ribosomes. We have found that the purified degradosome has RNA helicase activity that precedes and is essential for exoribonuclease activity of this complex. The degradosome RNase activity is necessary for mitochondrial biogenesis but in vitro the degradosome without RNase activity is still able to unwind RNA. In yeast strains lacking degradosome components there is a strong accumulation of mitochondrial mRNA and rRNA precursors not processed at 3'- and 5'-ends. The observed accumulation of precursors is probably the result of lack of degradation rather than direct inhibition of processing. We suggest that the degradosome is a central part of a mitochondrial RNA surveillance system responsible for degradation of aberrant and unprocessed RNAs.  相似文献   

14.
Transglutaminase activity was found to be present in highly purified non-synaptosomal rat brain mitochondria. A 78-kDa protein in these organelles was shown to be a transglutaminase 2 substrate, and incubation of a non-synaptosomal mitochondrial lysate with transglutaminase 2 yielded high-Mr proteins. The 78-kDa protein was identified as mitochondrial aconitase by MALDI-TOF analysis. Aconitase activity was decreased in a dose-dependent manner when non-synaptosomal rat brain mitochondria were incubated with transglutaminase 2. Transglutaminase activity is increased about 2-fold in the mitochondrial fraction of HD caudate. Moreover, Western blotting of the mitochondrial fraction revealed that most of the mitochondrial aconitase in HD caudate is present as high-Mr aggregates. Aconitase activity was previously shown to be decreased in Huntington disease (HD) caudate (a region severely damaged by the disease). The present findings suggest that an increase of transglutaminase activity in HD caudate may contribute to mitochondrial dysfunction by incorporating aconitase into inactive polymers.  相似文献   

15.
The percent of mitochondrial protein contamination in nuclei decreased 10-fold (from 18 to 1.8%) under purification of protein-labelled mitochondria before their introduction into nuclei-free homogenate, cytochromoxidase activity being unchanged. Thus, cytochromoxidase activity of nuclei does not correlate with the amount of nuclei-adsorbed mitochondrial protein, which demonstrates the presence of nuclear cytochromoxidase independent on mitochondrial protein. Radioactivity of protein-labelled mitochondria is proportially distributed between globuline, deoxyribonucleoprotein, acid and residual nuclear proteins, as it is shown under fractionation of nuclei isolated from protein-labeled mitochondria containing homogenate. The comparison of mitochondrial protein contamination of nuclear membranes and their possible contamination with cytochromoxidase and suecinate-cytochrome-c-reducatase activities revealed that cytochromoxidase activity of nuclear membranes is twice higher and succinate-cytochrome-c-reductase activity is considerably lower than it can be referred to mitochondrial protein contamination. The ratio of cytochrome-c-oxidase and succinate-cytochrome-c-reductase activities in isolated nuclear membranes is 4-7 times as high as that in mitochondrial membranes under the same isolation procedure. The data obtained make possible to consider the cytochromoxidase activity of nuclear membranes to be really nuclear enzyme, and not a contominant of nucleipreparation with mitochondrial membranes.  相似文献   

16.
A controlled regulation of mitochondrial mass through either the production (biogenesis) or the degradation (mitochondrial quality control) of the organelle represents a crucial step for proper mitochondrial and cell function. Key steps of mitochondrial biogenesis and quality control are overviewed, with an emphasis on the role of mitochondrial chaperones and proteases that keep mitochondria fully functional, provided the mitochondrial activity impairment is not excessive. In this case, the whole organelle is degraded by mitochondrial autophagy or "mitophagy." Beside the maintenance of adequate mitochondrial abundance and functions for cell homeostasis, mitochondrial biogenesis might be enhanced, through discussed signaling pathways, in response to various physiological stimuli, like contractile activity, exposure to low temperatures, caloric restriction, and stem cells differentiation. In addition, mitochondrial dysfunction might also initiate a retrograde response, enabling cell adaptation through increased mitochondrial biogenesis.  相似文献   

17.
Regulation of mitochondrial structure and function is a central component of infection with viruses, including human cytomegalovirus (HCMV), as a virus means to modulate cellular metabolism and immune responses. Here, we link the activity of the mitochondrial deacetylase SIRT3 and global mitochondrial acetylation status to host antiviral responses via regulation of both mitochondrial structural integrity and metabolism during HCMV infection. We establish that SIRT3 deacetylase activity is necessary for suppressing virus production, and that SIRT3 maintains mitochondrial pH and membrane potential during infection. By defining the temporal dynamics of SIRT3-substrate interactions during infection, and overlaying acetylome and proteome information, we find altered SIRT3 associations with the mitochondrial fusion factor OPA1 and acetyl-CoA acyltransferase 2 (ACAA2), concomitant with changes in their acetylation levels. Using mutagenesis, microscopy, and virology assays, we determine OPA1 regulates mitochondrial morphology of infected cells and inhibits HCMV production. OPA1 acetylation status modulates these functions, and we establish K834 as a site regulated by SIRT3. Control of SIRT3 protein levels or enzymatic activity is sufficient for regulating mitochondrial filamentous structure. Lastly, we establish a virus restriction function for ACAA2, an enzyme involved in fatty acid beta-oxidation. Altogether, we highlight SIRT3 activity as a regulatory hub for mitochondrial acetylation and morphology during HCMV infection and point to global acetylation as a reflection of mitochondrial health.  相似文献   

18.
In this study, we have identified a novel mitochondrial ubiquitin ligase, designated MITOL, which is localized in the mitochondrial outer membrane. MITOL possesses a Plant Homeo-Domain (PHD) motif responsible for E3 ubiquitin ligase activity and predicted four-transmembrane domains. MITOL displayed a rapid degradation by autoubiquitination activity in a PHD-dependent manner. HeLa cells stably expressing a MITOL mutant lacking ubiquitin ligase activity or MITOL-deficient cells by small interfering RNA showed an aberrant mitochondrial morphology such as fragmentation, suggesting the enhancement of mitochondrial fission by MITOL dysfunction. Indeed, a dominant-negative expression of Drp1 mutant blocked mitochondrial fragmentation induced by MITOL depletion. We found that MITOL associated with and ubiquitinated mitochondrial fission protein hFis1 and Drp1. Pulse-chase experiment showed that MITOL overexpression increased turnover of these fission proteins. In addition, overexpression phenotype of hFis1 could be reverted by MITOL co-overexpression. Our finding indicates that MITOL plays a critical role in mitochondrial dynamics through the control of mitochondrial fission proteins.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号