首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long-lasting and rapid calcium changes during mitosis   总被引:11,自引:7,他引:4       下载免费PDF全文
A more complete understanding of calcium's role in cell division requires knowledge of the timing, magnitude, and duration of changes in cytoplasmic-free calcium, [Ca2+]i, associated with specific mitotic events. To define the temporal relationship of changes in [Ca2+]i to cellular and chromosomal movements, we have measured [Ca2+]i every 6-7 s in single-dividing Pt K2 cells using fura-2 and microspectrophotometry, coupling each calcium measurement with a bright-field observation. In the 12 min before discernable chromosome some separation, 90% of metaphase cells show at least one transient of increased [Ca2+]i, 72% show their last transient within 5 min, and a peak of activity is seen at 3 min before chromosome separation. The mean [Ca2+]i of the metaphase transients is 148 +/- 31 nM (61 transients in 35 cells) with an average duration of 21 +/- 14 s. The timing of these increases makes it unlikely that these transient increases in [Ca2+]i are acting directly to trigger the start of anaphase. However, it is possible that a transient rise in calcium during late metaphase is part of a more complex progression to anaphase. In addition to these transient changes, a gradual increase in [Ca2+]i was observed starting in late anaphase. Within the 2 min surrounding cytokinesis onset, 82% of cells show a transient increase in [Ca2+]i to 171 +/- 48 nM (53 transients in 32 cells). The close temporal correlation of these changes with cleavage is consistent with a more direct role for calcium in this event, possibly by activating the contractile system. To assess the specificity of these changes to the mitotic cycle, we examined calcium changes in interphase cells. Two-thirds of interphase cells show no transient increases in calcium with a mean [Ca2+]i of 100 +/- 18 nM (n = 12). However, one-third demonstrate dramatic and repeated transient increases in [Ca2+]i. The mean peak [Ca2+]i of these transients is 389 +/- 70 nM with an average duration of 77 s. The necessity of any of these transient changes in calcium for the completion of mitotic or interphase activities remains under investigation.  相似文献   

2.
Global Ca2+ transients have been observed to precede nuclear envelope breakdown and the onset of anaphase in Swiss 3T3 fibroblasts in 8% (vol/vol) FBS. The occurrence of these Ca2+ transients was dependent on intracellular stores. These Ca2+ transients could be (a) abolished by serum removal without halting mitosis, and (b) eliminated by increasing intracellular Ca2+ buffering capacity through loading the cells with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) buffer, via the tetra(acetoxymethyl) ester, without hindering the transition into anaphase. Microinjection of sufficient concentrations of BAPTA buffer could block nuclear envelope breakdown. Pulses of Ca2+ generated by flash photolysis of intracellularly trapped nitr-5, a "caged" Ca2+, could precipitate precocious nuclear envelope breakdown in prophase cells. In metaphase cells, photochemically generated Ca2+ pulses could cause changes in the appearance of the chromosomes, but the length of time required for cells to make the transition from metaphase to anaphase remained essentially unchanged regardless of whether a Ca2+ pulse was photoreleased during metaphase. The results from these photorelease experiments were not dependent on the presence of serum in the medium. Discharging intracellular Ca2+ stores with ionomycin in the presence of 1.8 mM extracellular Ca2+ doubled the time for cells to pass from late metaphase into anaphase, whereas severe Ca2+ deprivation by treatment with ionomycin in EGTA-containing medium halted mitosis. Our results collectively indicate that Ca2+ is actively involved in nuclear envelope breakdown, but Ca2+ signals are likely unnecessary for the metaphase-anaphase transition in Swiss 3T3 fibroblasts. Additional studies of intracellular Ca2+ concentrations in mitotic REF52 and PtK1 cells revealed that Ca2+ transients are not observed at all mitotic stages in all cells. The absence of observable global Ca2+ transients, where calcium buffers can block and pulses of Ca2+ can advance mitotic stages, may imply that the relevant Ca2+ movements are too local to be detected.  相似文献   

3.
Calcium plays a crucial role in regulating the growth and differentiation of cultured keratinocytes. However, the mechanism(s) of this regulation is not clear. Prior studies have shown that intracellular free calcium (Cai) increases with keratinocyte differentiation. In this study, in order to evaluate the role of cytosolic free calcium and organelle-bound calcium in keratinocyte differentiation, we quantitated and localized calcium pools in keratinocytes, utilizing the fluorescence probe indo-1 and ion-capture cytochemistry, respectively. Cai of undifferentiated keratinocytes was 80–120 nM, whereas Cai of differentiated keratinocytes was 200–300 nM depending on the extent of differentiation. The Cai of individual cells in an undifferentiated colony was heterogeneous (60–160 nM) with larger cells displaying higher Cai. Heterogeneity also was observed in the intracellular calcium-containing precipitates in the different layers of stratifying keratinocyte cultures using the cytochemical technique. Calcium precipitates were abundant in the lower cell layers, progressively decreasing apically, with the uppermost layer devoid of precipitates. Calcium-containing precipitates appeared as fine-tocoarse electron-dense granules on the plasma membrane, within the cytosol, mitochondria, nucleus, and vacuolar organelles. Whereas ionomycin in the presence of extracellular calcium increased the amount of intracellular calcium precipitates, EGTA removed calcium precipitates from organelles. Unlike intact epidermis, keratinocytes displayed no extracellular calcium reservoirs. Putative calcium binding sites, visualized by trivalent lanthanum (La) binding, were abundant on cell membranes and desmosomes of basaloid cells, but decreased in the upper cell layers. These studies revealed differences in the distribution of free ionic calcium (as determined by the fluorescence technique) and organelle-bound calcium (as determined by the cytochemical technique). Striking differences were also observed in calcium localization between intact epidermis and cultured epidermal cells. The localization pattern of calcium in cultured keratinocytes may reflect the hyperproliferative state of these cells, as in psoriatic epidermis, and/or the absence of a normal permeability barrier in these submerged cultures. © 1993 Wiley-Liss, Inc.  相似文献   

4.
To monitor cytosolic [Ca2+] over a wide range of concentrations in functioning skeletal muscle cells, we have used simultaneously the rapid but relatively low affinity calcium indicator antipyrylazo III (AP III) and the slower but higher affinity indicator fura-2 in single frog twitch fibers cut at both ends and voltage clamped with a double vaseline gap system. When both dyes were added to the end pool solution the cytosolic fura-2 concentration reached a steady level equal to the end pool concentration within approximately 2.5 h, a time when the AP III concentration was still increasing. For depolarizing pulses of increasing amplitude, the fura-2 fluorescence signal approached saturation when the simultaneously recorded AP III absorbance change was far from saturation. Comparison of simultaneously recorded fura-2 and AP III signals indicated that the mean values of the on and off rate constants for calcium binding to fura-2 in 18 muscle fibers were 1.49 x 10(8) M-1 s-1 and 11.9 s-1, respectively (mean KD = 89 nM), if all AP III in the fiber is assumed to behave as in calibrating solution and to be in instantaneous equilibrium with [Ca2+]. [Ca2+] transients calculated from the fura-2 signals using these rate constants were consistent with the [Ca2+] transients calculated from the AP III signals. Resting [Ca2+] or small changes in [Ca2+] which could not be reliably monitored with AP III could be monitored with fura-2 with little or no interference from changes in [Mg2+] or from intrinsic signals. The fura-2 signal was also less sensitive to movement artifacts than the AP III signal. After a [Ca2+] transient the fura-2 signal demonstrated a relatively small elevation of [Ca2+] that was maintained for many seconds.  相似文献   

5.
The cytotoxicity of infectious agents can be mediated by disruption of calcium signaling in target cells. Outer membrane proteins of the spirochete Treponema denticola, a periodontal pathogen, inhibit agonist-induced Ca(2+) release from internal stores in gingival fibroblasts, but the mechanism is not defined. We determined here that the major surface protein (Msp) of T. denticola perturbs calcium signaling in human fibroblasts by uncoupling store-operated channels. Msp localized in complexes on the cell surface. Ratio fluorimetry showed that in cells loaded with fura-2 or fura-C18, Msp induced cytoplasmic and near-plasma membrane Ca(2+) transients, respectively. Increased conductance was confirmed by fluorescence quenching of fura-2-loaded cells with Mn(2+) after Msp treatment. Calcium entry was blocked with anti-Msp antibodies and inhibited by chelating external Ca(2+) with EGTA. Msp pretreatment reduced the amplitude of [Ca(2+)](i) transients upon challenge with ATP or thapsigargin. In experiments using cells loaded with mag-fura-2 to report endoplasmic reticulum Ca(2+), Msp reduced Ca(2+) efflux from endoplasmic reticulum stores when ATP was used as an agonist. Msp alone did not induce Ca(2+) release from these stores. Msp inhibited store-operated influx of extracellular calcium following intracellular Ca(2+) depletion by thapsigargin and also promoted the assembly of subcortical actin filaments. This actin assembly was blocked by chelating intracellular Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester. The reduced amplitude of agonist-induced transients and inhibition of store-operated Ca(2+) entry due to Msp were reversed by latrunculin B, an inhibitor of actin filament assembly. Thus, Msp retards Ca(2+) release from endoplasmic reticulum stores, and it inhibits subsequent Ca(2+) influx by uncoupling store-operated channels. Actin filament rearrangement coincident with conformational uncoupling of store-operated calcium fluxes is a novel mechanism by which surface proteins and toxins of pathogenic microorganisms may damage host cells.  相似文献   

6.
Gap junctional conductance (gj) between cardiac ventricular myocyte pairs is rapidly, substantially, and reversibly reduced by sarcoplasmic acidification with CO2 when extracellular calcium activity is near physiological levels (1.0 mM CaCl2 added; 470 microM Ca++). Intracellular calcium concentration (Cai), measured by fura-2 fluorescence in cell suspensions, was 148 +/- 39 nM (+/- SEM, n = 6) and intracellular pH (pHi), measured with intracellular ion-selective microelectrodes, was 7.05 +/- 0.02 (n = 5) in cell pair preparations bathed in medium equilibrated with air. Cai increased to 515 +/- 12 nM (n = 6) and pHi decreased to 5.9-6.0 in medium equilibrated with 100% CO2. In air-equilibrated low-calcium medium (no added CaCl2; 2-5 microM Ca++), Cai was 61 +/- 9 nM (n = 13) at pHi 7.1. Cai increased to only 243 +/- 42 nM (n = 9) at pHi 6.0 in CO2-equilibrated low-calcium medium. Junctional conductance, in most cell pairs, was not substantially reduced by acidification to pHi 5.9-6.0 in low-calcium medium. Cell pairs could still be electrically uncoupled reversibly by the addition of 100 microM octanol, an agent which does not significantly affect Cai. In low-calcium low-sodium medium (choline substitution for all but 13 mM sodium), acidification with CO2 increased Cai to 425 +/- 35 nM (n = 11) at pHi 5.9-6.0 and gj was reduced to near zero. Junctional conductance could also be reduced to near zero at pHi 6.0 in low-calcium medium containing the calcium ionophore, A23187. The addition of the calcium ionophore did not uncouple cell pairs in the absence of acidification. In contrast, acidification did not substantially reduce gj when intracellular calcium was low. Increasing intracellular calcium did not appreciably reduce gj at pHi 7.0. These results suggest that, although other factors may play a role, H+ and Ca++ act synergistically to decrease gj.  相似文献   

7.
Rat glomerular mesangial cell monolayers loaded with the fluorescent probe fura-2 responded to exogenous platelet-activating factor (PAF) with a rapid increase in cytosolic free calcium concentration ([Ca2+]i). PAF-induced [CA2+]i transients consisted of a dose-dependent phasic peak response followed by a sustained tonic phase of increased [Ca2+]i. Chelation of extracellular calcium with EGTA suppressed the tonic phase of increased [Ca2+]i but did not affect the phasic peak response. This suggests two mechanisms for the elevation of [Ca2+]i: a transient mobilization from intracellular stores and an enhanced calcium influx across the plasma membrane, possibly mediated by receptor-operated channels. Lyso-PAF had no effect on basal [Ca2+]i and the PAF-receptor antagonist L652,731 selectively inhibited responses to PAF. PAF-stimulated mesangial cells displayed homologous desensitization to reexposure to PAF while still being responsive to other calcium-mobilizing agonists. Preincubation of cells with the protein kinase C (PKC) activator phorbol myristate acetate diminished the PAF-induced [Ca2+]i transient, suggesting a regulatory role for PKC in PAF-activation of mesangial cells. An increase in [Ca2+]i, as a result of receptor-linked activation of phospholipase C, may mediate PAF-induced hemodynamic and inflammatory events in renal glomeruli.  相似文献   

8.
Treatment of bovine chromaffin cells with 40 mM KCl stimulates a 3-fold increase in total methionine enkephalin immunoreactivity (medium plus cells) and a 4-fold increase in proenkephalin mRNA (mRNAenk). These effects of KCl, which are dependent on extracellular calcium, can be blocked by treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA), although release of methionine enkephalin appears less affected. Using fura-2-loaded chromaffin cells and a dual-excitation wavelength spectrofluorometer, we have examined whether the actions of KCl and TPA on methionine enkephalin synthesis and release can be explained by changes in intracellular free calcium ([Ca2+]i). KCl produced a rapid 600 nM increase in [Ca2+]i from resting levels of approximately 170 nM. Subsequently, [Ca2+]i declined to a new steady-state plateau which was approximately 275 nM higher than the original resting levels. The postdepolarization plateau of [Ca2+]i was reduced by TPA, (-)-(R)-202,791 (a dihydropyridine calcium channel antagonist), and LaCl3 (a nonselective calcium channel blocker). TPA also inhibited potentiation of the KCl-stimulated plateau of [Ca2+]i due to (+)-(S)-202,791, a calcium channel agonist. In contrast, TPA had no effect on resting [Ca2+]i and only slightly inhibited the initial rapid KCl-stimulated increase in [Ca2+]i. The inhibitory effects were maintained for 24 h in the continuous presence of TPA. We conclude 1) that TPA inhibits enkephalin synthesis by inactivating dihydropyridine-sensitive voltage-dependent calcium channels, 2) that these channels alone maintain elevated [Ca2+]i following KCl depolarization, and 3) that sustained elevation in [Ca2+]i is necessary in order to increase enkephalin synthesis in KCl-treated chromaffin cells.  相似文献   

9.
10.
Digital imaging and the patch clamp technique were used to investigate the intracellular calcium concentration in olfactory receptor neurons using the Ca2+ indicator dyes fura-2 and fura-2/AM. The spatial distribution of Cai2+ as well as its modification by the drugs Amiloride and Ruthenium Red were studied. Resting calcium concentrations in cells loaded with fura-2/AM were between 10 and 200 nM. In cells that were loaded with the pentapotassium salt of fura-2 through the patch pipette, calcium concentrations were in the same range if ATP was added to the pipette solution. Otherwise, Ca2+ reached concentrations of approximately 500 nM. Most of the observed cells showed a standing gradient of calcium, the calcium concentrations in the distal dendritic end of the cell being higher than in the soma. In some cells, the gradient was markedly reduced or abolished by adding either Amiloride or Ruthenium Red to the bath solution. In a few cells, neither drug had any effect upon the gradient. It is suggested that the inhomogenous spatial distribution of intracellular calcium in olfactory cells of Xenopus laevis is brought about by an influx of calcium ions through two different calcium permeable conductances in the peripheral compartments of the cells. The fact that only either Ruthenium Red or Amiloride abolished the standing calcium gradient further suggested that the two conductances blocked were presumably not coexpressed in the same cells.  相似文献   

11.
This study was designed to examine the role of changes in cytoplasmic free calcium concentration ([Ca2+]i) during the response to alpha 1-adrenergic agonists in cultured renal proximal tubular cells. Experiments were carried out on primary cultures of canine proximal tubular cells grown in defined culture medium on a solid support, on collagen-coated polycarbonate membranes, or on collagen-coated glass coverslips. Quin-2 and fura-2 were used to monitor [Ca2+]i. The basal level of [Ca2+]i was 101 nM, as measured with quin-2, and 122 nM, as determined using fura-2. Fluorescence flow cytometry revealed that about 85% of the population of proximal tubular cells responded to phenylephrine with an increase in [Ca2+]i. Phenylephrine (10(-5) M) caused an immediate actual increase in [Ca2+]i by 18 and 24%, as determined with quin-2 and fura-2, respectively, with the peak increase in [Ca2+]i averaging 22% and 44% over the basal level (180-300 sec). This effect did not require extracellular calcium. The effect of phenylephrine was abolished by prazosin and verapamil. Fluorescence microscopy of quin-2 or fura-2 loaded cells revealed punctate areas of fluorescence within the cytoplasm suggesting vesicular uptake of the dyes. Pinocytotic entrapment of the dyes was demonstrated by the transfer of cell-impermeant fura-2 across tubular cell monolayers mounted in Ussing chambers. The transfer of the dye was similar to that of a marker of fluid-phase pinocytosis, Lucifer Yellow (LY). This pinocytotic entrapment of Ca2+-indicators would lead to underestimation of the actual calcium transients. Microfluorometric study of single proximal tubular cells "scrape-loaded" with fura-2 revealed a four-fold increase in [Ca2+]i concentration following stimulation with phenylephrine.  相似文献   

12.
We have probed the mechanisms by which severe heat alters cytosolic calcium ion concentrations (Cai) in individual cultured human endothelial cells (ATCC ♯1998). Cells adhering to glass coverslips were heated to as high as 50°C and Cai determined by means of a fluorescence laser imaging system using the calcium-sensitive dye, indo-1, in the presence of thapsigargin, and in Na-free and Ca-free media. Baseline Cai varied between 175–225 nM. When cells were heated to 50°C in a complete Ca-containing medium, there was first a transient fall in Cai, then a rapid rise of 50–100 nM in Cai, followed by a slower, secondary rise of 50–75 nM. Depleting the intracellular calcium stores with thapsigargin blocked both the transient fall and the secondary rise in Cai. Placement of the cells into a Ca-free medium blocked both the transient fall and the initial rapid rise, while use of a Na-free buffer prevented the initial rapid rise only. These data suggest that in human endothelial cells, extreme heat accelerates the CaATPase pumps of the intracellular Ca stores causing the transient fall in Cai which is soon followed by activation of the reverse mode of the Na/Ca exchanger to cause the initial rapid rise in Cai. The Ca-release channels of the intracellular stores become activated by heat to cause the secondary, slow rise in Cai. This preliminary work indicates that the application of heat to cultured cells can be a useful probe to examine the kinetics and unmask mechanisms of intracellular Ca fluctuations.  相似文献   

13.
Calcium transients in single, human gingival fibroblasts were studied after mechanical stretching of flexible culture substrates. A model system was developed to reproducibly stretch and rapidly (< 1 sec) refocus cells in the same focal plane so that changes in the concentration of free intracellular calcium ions ([Ca2+]i) were monitored without delay. Attached cells were grown on flexible bottom Petriperm dishes, loaded with fura-2/AM, and stretched by 1% or 2.8% of substrate area. The stretch caused no significant cell detachment or membrane lesions. A 1% stretch induced no calcium response, but a 2.8% stretch stimulated an initial calcium transient and the subsequent generation of [Ca2+]i oscillations of up to 2,000 sec. At 1% stretch, there was no calcium response. Cell shape and plating time were important determinants in the calcium response to mechanical stimulation: the responder cells were small and round without long processes. Major calcium transients were inhibited completely by 5 mM EGTA or by 10 μM gadolinium ions, by 50 μM nifedipine, or 250 μM verapamil, suggesting an influx of calcium through stretch-activated (SA) channels and L-type calcium channels. Depolarization by high KCl (144 mM) in the extracellular medium enhanced the amplitude of calcium transients by 54%. Calcium oscillations were not inhibited by preincubation with thapsigargin, caffeine, cholera toxin, staurosporine or 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7), indicating that IP3 sensitive pools, IP3 insensitive pools, G5α subunits, and protein kinase C, respectively, were not involved in the generation of calcium oscillations. Pretreatment with genistein, a specific tyrosine kinase inhibitor or cytochalasin D, an inhibitor of actin polymerization, or pertussis toxin, an inhibitor of G and G subunits, completely abolished calcium transients and oscillations. These results indicate that Ca2+ flux due to mechanical stretching is likely mediated through SA ion channe s and is dependent on tyrosine kinases, pertussis toxin-sensitive subunits of G-proteins, and actin filaments. © 1994 Wiley-Liss, Inc.  相似文献   

14.
In order to evaluate the role of calcium in the activation processes in eosinophils induced by platelet-activating factor (PAF), we investigated the changes in free cytoplasmatic Ca2+ concentration using fura-2. PAF causes a rapid and transitory rise of the intracellular free calcium ion concentration [( Ca2+]i) in purified guinea pig eosinophils of approx. 1000 nM above a basal level of 120.7 +/- 36.5 nM (n = 10). The effect was dose-related with a maximum rise at 1000 nM PAF and an EC50 of 17.4 nM and specifically inhibited by the PAF antagonist WEB 2086 with an IC50 of 95.5 nM. WEB 2086 did not affect either the leukotriene B4- or the fMet-Leu-Phe-induced elevation of [Ca2+]i. The response to PAF was dependent on external Ca2+ as it was significantly inhibited by EGTA (85.6 +/- 5.4%) and Ni2+ (95.8 +/- 2.1%) but not by the dihydropyridine antagonist nimodipine. We conclude that Ca2+ entry via receptor-operated Ca2+ channels may be involved in PAF-induced degranulation of eosinophils.  相似文献   

15.
The release of vasodilating substances from the vascular endothelium has been postulated to depend on a rise in the level of intracellular free calcium (Cai++). We measured Cai++ in intact monolayers of calf endothelial cells, grown in culture, that were loaded with the fluorescent calcium indicator quin 2. Fluorescence (excitation wavelength 340 nm, emission wavelength 492 nm) was calibrated by raising Cai++ to a maximum with the calcium ionophore ionomycin (0.1 microM) and by lowering it to a minimum with ionomycin plus manganese (0.4 mM), which quenches quin 2 fluorescence completely. Loss of fluorescent dye from the cells was calculated from fluorescence at the isosbestic excitation wavelength (365 nm). Resting Cai++ was 71 +/- 3 (SEM) nM. ATP (adenosine-5'-triphosphate) raised Cai++ dose-dependently and reversibly to 458 +/- 60 nM at a concentration of 10 microM, and at 0.1 mM to values close to those that occurred under ionomycin. ADP (A-5'-PP) and AMP (A-5'-P) had smaller effects with a maximal Cai++ of 287 +/- 72 nM at 30 microM ADP and 176 +/- 17 nM at 0.1 mM AMP. At these concentrations, ADP and AMP attenuated significantly the increase of Cai++ under ATP (10 microM). Adenosine (0.1 or 0.3 mM) and acetylcholine (0.1 to 30 microM) enhanced Cai++ inconsistently, by a maximum of 50 nM. These effects were abolished by theophylline and atropine, respectively. In the absence of extracellular calcium, ATP still raised Cai++, although endothelial responsiveness declined after repetitive stimulations. We conclude that activation of purinergic receptors increases intracellular free calcium in endothelial cells, and that this increase is probably an essential trigger for synthesis of prostacyclin and the labile endothelium-derived relaxant factor.  相似文献   

16.
Although increased free intracellular calcium (Cai) may be one of the main regulators of cell growth and differentiation, studies in cell populations have implied that not all growth factors produce Cai increases. In order to examine in more detail whether Cai increases were related to mitogenesis, we used digital image analysis of intracellular Fura-2 fluorescence to measure Cai in individual BALB/c 3T3 cells stimulated with either platelet-derived growth factor (PDGF) or fibroblast growth factor (FGF). We found that PDGF induced larger and more prolonged Cai increases than FGF did, but that both growth factors induced an initial rapid increase in Cai (less than 2 min) followed by a later sustained increase (greater than 20 min). Only the prolonged Cai increase required extracellular calcium. Following PDGF treatment (1-8 units/ml), the percentage of cells with a large peak Cai increase (greater than twofold) correlated with the percentage of cells made competent (subsequent growth in 1% platelet-poor-plasma). In contrast, purified bovine basic FGF (200-800 pg/ml) and recombinant human acidic FGF (10-300 ng/ml) produced peak Cai increases that were not directly correlated with mitogenesis. In addition, concentrations of intracellular Quin 2 that inhibited Cai transients also inhibited PDGF stimulation but not FGF stimulation of mitogenesis. Thus, Cai increases are necessary for mitogenesis in BALB/c 3T3 cells stimulated by PDGF, but not that stimulated by FGF.  相似文献   

17.
Heat shock causes significant changes in intracellular free calcium ([Ca2+]i) which occur rapidly following temperature elevation. The resting level of free calcium in single Drosophila melanogaster larval salivary gland cells measured with the fluorescent indicator fura-2 is 198 +/- 31 nM (n = 4). It increases approximately 10-fold to 1870 +/- 770 nM (n = 4), during a heat shock. When salivary glands are incubated in calcium-free, EGTA-buffered medium the resting free calcium is reduced to 80 +/- 7 nM (n = 3) and heat shock results in a 4-fold increase in free calcium to 353 +/- 90 nM (n = 3). Drosophila Kc cells show a heat shock-induced increase in [Ca2+]i from 118.4 +/- 2 nM (n = 11) to 323 +/- 18 nM. Procedures were devised to block the effects of heat shock on the increase in intracellular calcium and assess its role in the induction of heat shock proteins and in the stress-induced rearrangement of the vimentin cytoskeleton. We report here the changes in [Ca2+]i are not required for a complete induction of the heat shock response or for the collapse of the vimentin cytoskeleton.  相似文献   

18.
BACKGROUND: Serum neopterin concentrations rise during activation of the cellular immune system. It is suggested that neopterin interacts with cellular redox mechanisms. This induces oxidative stress, which inhibits intracellular Ca2+ transients in various cell types. In type II alveolar epithelial cells, Ca2+ increase is considered involved in the exocytosis of surfactants. This exocytosis is disturbed during inflammation. AIMS: To clarify whether neopterin affects adenosine triphosphate (ATP)-induced Ca2+ transients in an alveolar epithelial cell line (L2). METHODS: Ca2+ transients were detected as fura-2 fluorescence by an image analysis system. RESULTS: Cells were exposed for 100 sec to ATP (1 microM, repeated four times). The first application of ATP induced an increase of the fluorescence ratio by approximately 100%, while the following stimulations resulted in smaller transients. In a second set of experiments, L2 cells were exposed to ATP or ATP + neopterin (100 nM), alternately. Simultaneous application of neopterin inhibited Ca2+ transients almost completely. CONCLUSIONS: Inhibition of Ca2+ transients by neopterin may lead to suppressed exocytosis of surfactant proteins in alveolar epithelial cells. This might contribute to the deterioration of pulmonary functions in the course of inflammatory processes.  相似文献   

19.
Agents that lower extracellular calcium concentration (EGTA) or modulate calcium transport (lanthanum or D600) have been applied to dividing stamen hair cells of Tradescantia and analyzed for their ability to change the following: (a) the time required to progress from nuclear envelope breakdown to the onset of anaphase (metaphase transit time), (b) the time required to progress from anaphase to the initiation of the cell plate, and (c) the rate of chromosome motion in anaphase. Control cells complete metaphase in 32 min, initiate a cell plate in 19 min, and display a chromosome motion rate of 1.45 micron/min. If cells are treated with a calcium-EGTA buffer (pCa 8) for 4 h, the metaphase transit time is increased to 53 min without any change in the time of cell plate formation or the rate of chromosome motion. Lanthanum and D600, under conditions in which their access to the plasmalemma has been facilitated by pretreating the cells with cutinase, also markedly extend metaphase and in several instances permanently arrest cells. Lanthanum, however, produce little or no change in cell plate initiation or the rate of chromosome motion. Microscopic observations of the mitotic apparatus in calcium-stressed cells reveal normal chromatin condensation and metaphase progression. Chromosomes partly untwine but remain attached at their kinetochores. It is suggested that a flux of calcium, derived from the extracellular compartment, may cause the final splitting of sister chromosomes and trigger the onset of anaphase. However, once anaphase has begun, chromosome motion and cell plate initiation proceed normally even under conditions of extracellular calcium restriction.  相似文献   

20.
Stretch activation of cation-permeable channels may be an important proximal sensory mechanism in mechanotransduction. As actin filaments may mediate cellular responses to changes of the mechanical properties of the substrate and regulate stretch-induced calcium transients, we examined the role of actin filaments and substrate flexibility in modulating the amplitude of stretch-activated intracellular calcium transients. Human gingival fibroblasts were subjected to mechanical stretch through integrins by magnetic force acting on collagen-coated ferric oxide beads. Intracellular calcium concentration was measured in fura-2-loaded cells by ratio fluorimetry. Cytochalasin D-treatment greatly increased (3-fold) the amplitude of stretch-activated calcium transients in well-spread cells grown on glass coverslips while phalloidin, colchicine or taxol exerted no signficant effects, indicating that actin filaments but not microtubules modulate stretch-activated calcium transients. In freshly plated cells with rounded shapes and poorly developed cortical actin filaments, stretch-induced calcium transients were of 3-fold higher amplitude than well-spread cells plated for 6-24 hrs and with well developed actin filaments. Cells plated on soft collagen-polyacrylamide gels showed round morphology but exhibited <50% of the response to stretch of well-spread cells on inflexible gels. Notably, cells on soft gels showed very heavy phalloidin staining for cortical actin filaments compared with cells on more inflexible surfaces which showed only light staining for cortical actin. While cell shape may have some effect on responsiveness to mechanical stretch, the rigidity of the cell membrane mediated by the extensive cortical actin network appears to be a central determinant in the regulation of stretch-induced calcium signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号