首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
A completely randomized RNA pool as well as a degenerate pool comprised of an RNA sequence which binds citrulline with a dissociation constant of 0 muM were used to select for tight binding arginine specific RNA aptamers. A modified in vitro selection scheme, based on affinity chromatography was applied to allow the enrichment of high affinity solution binders. The selection scheme included a negative selection with the non-cognate ligand citrulline, and a heat denaturation step prior to affinity elution with an excess of the cognate ligand arginine. After 20 cycles the majority of the pools bound specifically to the arginine matrix even after denaturation/renaturation in the presence of 20 mM of a non-cognate amino acid. When denatured and eluted in the presence of 20 mM arginine, the selected RNAs quantitatively washed off the column. These RNA aptamers were cloned and sequenced. Equilibrium dialysis performed with the most abundant clone among the selected sequence revealed Kd values of 330 nM for the RNA/arginine affinity, which is nearly a 200-fold improvement over the tightest binding arginine binding RNAs known to date. Arginine recognition by this RNA is highly enantioselectice: L- arginine is bound 12 000-fold better than D-arginine. Chemical modification analysis revealed that the secondary structure of the aptamer might contain a pseudoknot motif. Our tight binding arginine aptamers join a number of natural and in vitro selected RNAs which recognize arginine. The RNAs described here compare in their binding affinity with the tightest binding RNA aptamers for low molecular weight molecules isolated in other in vitro selection experiments.  相似文献   

4.
In this paper, we describe a new method for selecting RNA aptamers that cooperatively bind to two specific sites within a target RNA. We designed a selection system in which two RNAs, a target RNA and a RNA pool, were assembled by employing a pre-organized GAAA tetraloop-11-nt receptor interaction. This allows us to select the binding sequence against a targeted internal loop as well as a linker region optimized for binding of the two binding sites. After the selection, the aptamers bound with dissociation constants in the nanomolar range, thereby forming a stable complex with the target RNA. Thus this method enables identification of aptamers for a specific binding site together with a linker for cooperative binding of the two RNAs. It appears that our new method can be applied generally to select RNAs that adhere tightly to a target RNA via two specific sites. The method can also be applicable for further engineering of both natural and artificial RNAs.  相似文献   

5.
In vitro selection of RNA aptamers that bind to a specific ligand usually begins with a random pool of RNA sequences. We propose a computational approach for designing a starting pool of RNA sequences for the selection of RNA aptamers for specific analyte binding. Our approach consists of three steps: (i) selection of RNA sequences based on their secondary structure, (ii) generating a library of three-dimensional (3D) structures of RNA molecules and (iii) high-throughput virtual screening of this library to select aptamers with binding affinity to a desired small molecule. We developed a set of criteria that allows one to select a sequence with potential binding affinity from a pool of random sequences and developed a protocol for RNA 3D structure prediction. As verification, we tested the performance of in silico selection on a set of six known aptamer–ligand complexes. The structures of the native sequences for the ligands in the testing set were among the top 5% of the selected structures. The proposed approach reduces the RNA sequences search space by four to five orders of magnitude—significantly accelerating the experimental screening and selection of high-affinity aptamers.  相似文献   

6.
Hepatitis C virus (HCV)-encoded nonstructural protein 3 (NS3) possesses protease, NTPase, and helicase activities, which are considered essential for viral proliferation. Thus, HCV NS3 is a good putative therapeutic target protein for the development of anti-HCV agents. In this study, we isolated specific RNA aptamers to the helicase domain of HCV NS3 from a combinatorial RNA library with 40-nucleotide random sequences using in vitro selection techniques. The isolated RNAs were observed to very avidly bind the HCV helicase with an apparent Kd of 990 pM in contrast to original pool RNAs with a Kd of >1 microM. These RNA ligands appear to impede binding of substrate RNA to the HCV helicase and can act as potent decoys to competitively inhibit helicase activity with high efficiency compared with poly(U) or tRNA. The minimal binding domain of the ligands was determined to evaluate the structural features of the isolated RNA molecules. Interestingly, part of binding motif of the RNA aptamers consists of similar secondary structure to the 3'-end of HCV negative-strand RNA. Moreover, intracellular NS3 protein can be specifically detected in situ with the RNA aptamers, indicating that the selected RNAs are very specific to the HCV NS3 helicase. Furthermore, the RNA aptamers partially inhibited RNA synthesis of HCV subgenomic replicon in Huh-7 hepatoma cell lines. These results suggest that the RNA aptamers selected in vitro could be useful not only as therapeutic and diagnostic agents of HCV infection but also as a powerful tool for the study of HCV helicase mechanism.  相似文献   

7.
8.
Binding of herpes simplex virus-1 US11 to specific RNA sequences   总被引:2,自引:0,他引:2       下载免费PDF全文
Herpes simplex virus-1 US11 is a RNA-binding protein with a novel RNA-binding domain. US11 has been reported to exhibit sequence- and conformation-specific RNA-binding, but the sequences and conformations important for binding are not known. US11 has also been described as a double-stranded RNA (dsRNA)-binding protein. To investigate the US11–RNA interaction, we performed in vitro selection of RNA aptamers that bind US11 from a RNA library consisting of >1014 80 base sequences which differ in a 30 base randomized region. US11 bound specifically to selected aptamers with an affinity of 70 nM. Analysis of 23 selected sequences revealed a strong consensus sequence. The US11 RNA-binding domain and ≤46 bases of selected RNA containing the consensus sequence were each sufficient for binding. US11 binding protected the consensus motif from hydroxyl radical cleavage. RNase digestions of a selected aptamer revealed regions of both single-stranded RNA and dsRNA. We observed that US11 bound two different dsRNAs in a sequence non-specific manner, but with lower affinity than it bound selected aptamers. The results define a relatively short specific sequence that binds US11 with high affinity and indicate that dsRNA alone does not confer high-affinity binding.  相似文献   

9.

Background

SELEX is a well established in vitro selection tool to analyze the structure of ligand-binding nucleic acid sequences called aptamers. Genomic SELEX transforms SELEX into a tool to discover novel, genomically encoded RNA or DNA sequences binding a ligand of interest, called genomic aptamers. Concerns have been raised regarding requirements imposed on RNA sequences undergoing SELEX selection.

Methodology/Principal Findings

To evaluate SELEX and assess the extent of these effects, we designed and performed a Neutral SELEX experiment omitting the selection step, such that the sequences are under the sole selective pressure of SELEX''s amplification steps. Using high-throughput sequencing, we obtained thousands of full-length sequences from the initial genomic library and the pools after each of the 10 rounds of Neutral SELEX. We compared these to sequences obtained from a Genomic SELEX experiment deriving from the same initial library, but screening for RNAs binding with high affinity to the E. coli regulator protein Hfq. With each round of Neutral SELEX, sequences became less stable and changed in nucleotide content, but no sequences were enriched. In contrast, we detected substantial enrichment in the Hfq-selected set with enriched sequences having structural stability similar to the neutral sequences but with significantly different nucleotide selection.

Conclusions/Significance

Our data indicate that positive selection in SELEX acts independently of the neutral selective requirements imposed on the sequences. We conclude that Genomic SELEX, when combined with high-throughput sequencing of positively and neutrally selected pools, as well as the gnomic library, is a powerful method to identify genomic aptamers.  相似文献   

10.
Sephadex-binding RNA ligands (aptamers) were obtained through in vitro selection. They could be classified into two groups based on their consensus sequences and the aptamers from both groups showed strong binding to Sephadex G-100. One of the highest affinity aptamers, D8, was chosen for further characterization. Aptamer D8 bound to dextran B512, the soluble base material of Sephadex, but not to isomaltose, isomaltotriose and isomaltotetraose, suggesting that its optimal binding site might consist of more than four glucose residues linked via alpha-1,6 linkages. The aptamer was very specific to the Sephadex matrix and did not bind appreciably to other supporting matrices, such as Sepharose, Sephacryl, cellulose or pustulan. Using Sephadex G-100, the aptamer could be purified from a complex mixture of cellular RNA, giving an enrichment of at least 60 000-fold, compared with a non-specific control RNA. These RNA aptamers can be used as affinity tags for RNAs or RNA subunits of ribonucleoproteins to allow rapid purification from complex mixtures of RNA using only Sephadex.  相似文献   

11.
As pathogens continue to evade therapeutical drugs, a better understanding of the mode of action of antibiotics continues to have high importance. A growing body of evidence points to RNA as a crucial target for antibacterial and antiviral drugs. For example, the aminocyclitol antibiotic streptomycin interacts with the 16S ribosomal RNA and, in addition, inhibits group I intron splicing. To understand the mode of binding of streptomycin to RNA, we isolated small, streptomycin-binding RNA aptamers via in vitro selection. In addition, bluensomycin, a streptomycin analogue that does not inhibit splicing, was used in a counter-selection to obtain RNAs that bind streptomycin with high affinity and specificity. Although an RNA from the normal selection (motif 2) bound both antibiotics, an RNA from the counter-selection (motif 1) discriminated between streptomycin and bluensomycin by four orders of magnitude. The binding site of streptomycin on the RNAs was determined via chemical probing with dimethylsulfate and kethoxal. The minimal size required for drug binding was a 46- and a 41-mer RNA for motifs 1 and 2, respectively. Using Pb2+ cleavage in the presence and absence of streptomycin, a conformational change spanning the entire mapped sequence length of motif 1 was observed only when both streptomycin and Mg2+ were present. Both RNAs require Mg2+ for binding streptomycin.  相似文献   

12.
Regulating eukaryotic gene expression with aptamers   总被引:2,自引:0,他引:2  
  相似文献   

13.
14.
15.
Prostatic acid phosphatase (PAP) expression increases proportionally with prostate cancer progression, making it useful in prognosticating intermediate to high-risk prostate cancers. A novel ligand that can specifically bind to PAP would be very helpful for guiding prostate cancer therapy. RNA aptamers bind to target molecules with high specificity and have key advantages such as low immunogenicity and easy synthesis. Here, human PAP-specific aptamers were screened from a 2′-fluoropyrimidine (FY)-modified RNA library by SELEX. The candidate aptamer families were identified within six rounds followed by analysis of their sequences and PAP-specific binding. A gel shift assay was used to identify PAP binding aptamers and the 6N aptamer specifically bound to PAP with a Kd value of 118 nM. RT-PCR and fluorescence labeling analyses revealed that the 6N aptamer bound to PAP-positive mammalian cells, such as PC-3 and LNCaP. IMR-90 negative control cells did not bind the 6N aptamer. Systematic minimization analyses revealed that 50 nucleotide sequences and their two hairpin structures in the 6N 2′-FY RNA aptamer were equally important for PAP binding. Renewed interest in PAP combined with the versatility of RNA aptamers, including conjugation of anti-cancer drugs and nano-imaging probes, could open up a new route for early theragnosis of prostate cancer.  相似文献   

16.
Systematic evolution of ligands by exponential enrichment (SELEX) is a powerful in vitro selection process used for over 2 decades to identify oligonucleotide sequences (aptamers) with desired properties (usually high affinity for a protein target) from randomized nucleic acid libraries. In the case of RNA aptamers, several highly complex RNA libraries have been described with RNA sequences ranging from 71 to 81 nucleotides (nt) in length. In this study, we used high-throughput sequencing combined with bioinformatics analysis to thoroughly examine the nucleotide composition of the sequence pools derived from several selections that employed an RNA library (Sel2N20) with an abbreviated variable region. The Sel2N20 yields RNAs 51?nt in length, which unlike longer RNAs, are more amenable to large-scale chemical synthesis for therapeutic development. Our analysis revealed a consistent and early bias against inclusion of adenine, resulting in aptamers with lower predicted minimum free energies (ΔG) (higher structural stability). This bias was also observed in control, "nontargeted" selections in which the partition step (against the target) was omitted, suggesting that the bias occurred in 1 or more of the amplification and propagation steps of the SELEX process.  相似文献   

17.
H Rhim  A P Rice 《Journal of virology》1993,67(2):1110-1121
Using gel shift assays, we found that the human immunodeficiency virus type 1 (HIV-1) Tat protein (Tat-1) bound both HIV-1 and HIV-2 TAR RNAs with similar high affinities. In contrast, the HIV-2 Tat protein (Tat-2) bound only TAR-2 RNA with high affinity. We conclude that the weak in vivo activity of Tat-2 on the HIV-1 long terminal repeat that has been observed previously is likely the result of low affinity for TAR-1 RNA. Additionally, TAR-2 RNA was found to contain multiple specific binding sites for Tat proteins. GAL4-Tat fusion proteins were analyzed to compare the relative transactivation activities of Tat-1 and Tat-2 in the absence of requirements for binding to TAR RNAs. The GAL4-Tat-2 protein was found to transactivate synthetic promoters containing GAL4 binding sites at levels severalfold higher than did the GAL4-Tat-1 protein.  相似文献   

18.
Koizumi M  Breaker RR 《Biochemistry》2000,39(30):8983-8992
Two classes of RNA aptamers that bind the second messenger adenosine 3',5'-cyclic monophosphate (cAMP; 1) were isolated from a random-sequence pool using in vitro selection. Class I and class II aptamers are formed by 33- and 31-nucleotide RNAs, respectively, and each is comprised of similar stem-loop and single-stranded structural elements. Class II aptamers, which dominate the final selected RNA population, require divalent cations for complex formation and display a dissociation constant (K(D)) for cAMP of approximately 10 microM. A representative class II aptamer exhibits substantial discrimination against 5'- and 3'-phosphorylated nucleosides such as ATP, 5'-AMP, and 3'-AMP. However, components of cAMP such as adenine and adenosine also are bound, indicating that the adenine moiety is the primary positive determinant of ligand binding. Specificity of cAMP binding appears to be established by hydrogen bonding interactions with the adenine base as well as by steric interactions with groups on the ribose moiety. In addition, the aptamer recognizes 8,5'-O-cycloadenosine (2) but not N(3), 5'-cycloadenosine (3), indicating that this RNA might selectively recognize the anti conformation of the N-glycosidic bond of cAMP.  相似文献   

19.
20.
Nucleic acid aptamer selection by systematic evolution of ligands by exponential enrichment (SELEX) has shown great promise for use in the development of research tools, therapeutics and diagnostics. Typically, aptamers are identified from libraries containing up to 1016 different RNA or DNA sequences by 5–10 rounds of affinity selection towards a target of interest. Such library screenings can result in complex pools of many target-binding aptamers. New high-throughput sequencing techniques may potentially revolutionise aptamer selection by allowing quantitative assessment of the dynamic changes in the pool composition during the SELEX process and by facilitating large-scale post-SELEX characterisation. In the present study, we demonstrate how high-throughput sequencing of SELEX pools, before and after a single round of branched selection for binding to different target variants, can provide detailed information about aptamer binding sites, preferences for specific target conformations, and functional effects of the aptamers. The procedure was applied on a diverse pool of 2′-fluoropyrimidine-modified RNA enriched for aptamers specific for the serpin plasminogen activator inhibitor-1 (PAI-1) through five rounds of standard selection. The results demonstrate that it is possible to perform large-scale detailed characterisation of aptamer sequences directly in the complex pools obtained from library selection methods, thus without the need to produce individual aptamers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号