首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
O Fleck  H Michael    L Heim 《Nucleic acids research》1992,20(9):2271-2278
The swi4+ gene of Schizosaccharomyces pombe is involved in termination of copy-synthesis during mating-type switching. The gene was cloned by functional complementation of a swi4 mutant transformed with a genomic library. Determination of the nucleotide sequence revealed an open reading frame of 2979 nucleotides which is interrupted by a 68 bp long intron. The putative Swi4 protein shows homology to Duc-1 (human), Rep-3 (mouse), HexA (Streptococcus pneumoniae) and MutS (Salmonella typhimurium). The prokaryotic proteins are known as essential components involved in mismatch repair. A strain with a disrupted swi4+ gene was constructed and analysed with respect to the switching process. As in swi4 mutants duplications occur in the mating-type region of the swi4 (null) strain, reducing the efficiency of switching.  相似文献   

2.
C Rdel  T Jupitz    H Schmidt 《Nucleic acids research》1997,25(14):2823-2827
In human cells DNA damage caused by UV light is mainly repaired by the nucleotide excision repair pathway. This mechanism involves dual incisions on both sides of the damage catalyzed by two nucleases. In mammalian cells XPG cleaves 3' of the DNA lesion while the ERCC1-XPF complex makes the 5' incision. The amino acid sequence of the human excision repair protein ERCC1 is homologous with the fission yeast Swi10 protein. In order to test whether these proteins are functional homologues, we overexpressed the human gene in a Schizosaccharomyces pombe swi10 mutant. A swi10 mutation has a pleiotropic effect: it reduces the frequency of mating type switching (a mitotic transposition event from a silent cassette into the expression site) and causes increased UV sensitivity. We found that the full-length ERCC1 gene only complements the transposition defect of the fission yeast mutant, while a C-terminal truncated ERCC1 protein also restores the DNA repair capacity of the yeast cells. Using the two-hybrid system of Saccharomyces cerevisiae we show that only the truncated human ERCC1 protein is able to interact with the S . pombe Rad16 protein, which is the fission yeast homologue of human XPF. This is the first example yet known that a human gene can correct a yeast mutation in nucleotide excision repair.  相似文献   

3.
The rad10, rad16, rad20, and swi9 mutants of the fission yeast Schizosaccharomyces pombe, isolated by their radiation sensitivity or abnormal mating-type switching, have been shown previously to be allelic. We have cloned DNA correcting the UV sensitivity or mating-type switching phenotype of these mutants and shown that the correcting DNA is encompassed in a single open reading frame. The gene, which we will refer to as rad16, is approximately 3 kb in length, contains seven introns, and encodes a protein of 892 amino acids. It is not essential for viability of S. pombe. The predicted protein is the homolog of the Saccharomyces cerevisiae RAD1 protein, which is involved in an early step in excision-repair of UV damage from DNA. The approximately 30% sequence identity between the predicted proteins from the two yeasts is distributed throughout the protein. Two-hybrid experiments indicate a strong protein-protein interaction between the products of the rad16 and swi10 genes of S. pombe, which mirrors that reported for RAD1 and RAD10 in S. cerevisiae. We have identified the mutations in the four alleles of rad16. They mapped to the N-terminal (rad10), central (rad20), and C-terminal (rad16 and swi9) regions. The rad10 and rad20 mutations are in the splice donor sequences of introns 2 and 4, respectively. The plasmid correcting the UV sensitivity of the rad20 mutation was missing the sequence corresponding to the 335 N-terminal amino acids of the predicted protein. Neither smaller nor larger truncations were, however, able to correct its UV sensitivity.  相似文献   

4.
5.
Human ERCC2 genomic clones give efficient, stable correction of the nucleotide excision repair defect in UV5 Chinese hamster ovary cells. One clone having a breakpoint just 5' of classical promoter elements corrects only transiently, implicating further flanking sequences in stable gene expression. The nucleotide sequences of a cDNA clone and genomic flanking regions were determined. The ERCC2 translated amino acid sequence has 52% identity (73% homology) with the yeast nucleotide excision repair protein RAD3. RAD3 is essential for cell viability and encodes a protein that is a single-stranded DNA dependent ATPase and an ATP dependent helicase. The similarity of ERCC2 and RAD3 suggests a role for ERCC2 in both cell viability and DNA repair and provides the first insight into the biochemical function of a mammalian nucleotide excision repair gene.  相似文献   

6.
DNA recombination required for mating type (mat1) switching in Schizosaccharomyces pombe is initiated by mat1 imprinting. The imprinting event is regulated by mat1 cis-acting elements and by several trans-acting factors, including swi1 (for switch), swi3, swi7, and sap1. swi1 and swi3 were previously shown to function in dictating unidirectional mat1 DNA replication by controlling replication fork movement around the mat1 region and, second, by pausing fork progression around the imprint site. With biochemical studies, we investigated whether the trans-acting factors function indirectly or directly by binding to the mat1 cis-acting sequences. First, we report the identification and DNA sequence of the swi3 gene. swi3 is not essential for viability, and, like the other factors, it exerts a stimulatory effect on imprinting. Second, we showed that only Swi1p and Swi3p interact to form a multiprotein complex and that complex formation did not require their binding to a DNA region defined by the smt-0 mutation. Third, we found that the Swi1p-Swi3p complex physically binds to a region around the imprint site where pausing of replication occurs. Fourth, the protein complex also interacted with the mat1-proximal polar terminator of replication (RTS1). These results suggest that the stimulatory effect of swi1 and swi3 on switching and imprinting occurs through interaction of the Swi1p-Swi3p complex with the mat1 regions.  相似文献   

7.
Ellermeier C  Schmidt H  Smith GR 《Genetics》2004,168(4):1891-1898
Previously isolated Schizosaccharomyces pombe swi5 mutants are defective in mitotic mating-type switching and in repair of meiotic recombination-related DNA double-strand breaks. Here, we identify the swi5 gene, which encodes an 85-amino-acid polypeptide, similar to Sae3 of Saccharomyces cerevisiae, with an N-terminal predicted coiled-coil domain. A swi5 complete deletion mutant had normal mitotic growth rate but was hypersensitive to DNA-damaging agents and defective in mating-type switching. In meiosis, recombinant frequencies were reduced by a factor of approximately 10. The swi5 deletion strongly reduced the viable spore yields of mutants lacking Rhp55 or Rhp57, proteins thought to aid joint molecule formation. Furthermore, the swi5 deletion strongly suppressed the low viable spore yield of mutants lacking Mus81*Eme1, which resolves joint molecules such as Holliday junctions. These and previous results indicate that the small Swi5 polypeptide acts in a branched pathway of joint molecule formation to repair meiotic DNA breaks.  相似文献   

8.
The human cyclophilin gene was isolated from a genomic library derived from leucocyte DNA and sequenced. The gene contains five exons and four introns. The amino acid sequence deduced from the exons matches perfectly the one previously determined from the T-cell cyclophilin cDNA. A TATA box is visible in the promoter region and putative Sp1 binding sites are also found there as well as in the first intron. Six members of the middle repetitive Alu gene family are present in one or other orientation in the non-coding regions of the cyclophilin gene. Hybridisation of genomic DNA to probes derived from the promoter region or the first intron indicates that the cyclophilin gene is present as a single copy in the human haploid genome. Seven other cyclophilin-related DNA clones isolated from the same library were also characterized. They show a high degree of similarity to the cyclophilin cDNA and are colinear to it. However, multiple genetic lesions, often including deletion and/or insertion events which modify the reading frame, are found in these clones which are therefore likely to represent processed pseudogenes.  相似文献   

9.
10.
11.
12.
In eukaryotes, the segregation of chromosomes is co-ordinated by the centromere and must proceed accurately if aneuploidy and cell death are to be avoided. The fission yeast centromere is complex, containing highly repetitive regions of DNA showing the characteristics of heterochromatin. Two proteins, Swi6p and Clr4p, that are associated with the fission yeast centromere also contain a chromo (chromatin organisation modifier) domain and are required for centromere function. We have analysed a novel fission yeast gene encoding a putative chromo domain called chp 1(+) (chromo domain protein in Schizosaccharomyces p ombe ). In the absence of Chp1p protein, cells are viable but show chromosome segregation defects such as lagging chromosomes on the spindle during anaphase and high rates of minichromosome loss, phenotypes which are also displayed by swi 6 and clr 4. A fusion protein between green fluorescent protein (GFP) and Chp1p, like Swi6p, is localized to discrete sites within the nucleus. In contrast to Swi6p and Clr4p, Chp1p is not required to repress silent mating-type genes. We demonstrate a genetic interaction between chp 1(+) and alpha-tubulin ( nda 2(+)) and between swi 6(+) and beta-tubulin ( nda 3(+)). Chp1p and Swi6p proteins may be components of the kinetochore which captures and stabilizes the microtubules of the spindle.  相似文献   

13.
14.
We have isolated and sequenced cDNA and genomic clones from Arabidopsis thaliana which specify a 241 residue protein with 84% sequence identity to a photosystem I Type I chlorophyll a/b -binding (CAB) protein from tomato. The open reading frame is interrupted by three introns which are found at equivalent positions as the corresponding introns in the tomato gene. Comparison to the amino acid sequence of other CAB proteins confirms that all CAB proteins share two regions of very high similarity. However, near the N-terminus and between the conserved regions this light-harvesting complex I (LHCI) protein, as other LHCI proteins from other plant species, has sequence motifs which appear to be PSI-specific. Restriction analysis of genomic DNA shows that the Arabidopsis protein is encoded by a single-copy gene.  相似文献   

15.
We report the nucleotide sequence of the chloroplast psbA gene encoding the 32 kilodalton protein of photosystem II from Chlamydomonas moewusii. Like its land plant homologues, this green algal protein consists of 353 amino acids. The C. moewusii psbA gene is composed of three exons containing 252, 11 and 90 codons and of two group I introns containing 2363 and 1807 nucleotides. Each of the introns features an internal open reading frame (ORF) that potentially encodes a basic protein of more than 300 residues. The primary sequences of the putative intron-encoded proteins are unrelated and none of them shares conserved elements with any of the proteins predicted from the group I intron sequences published so far. The first C. moewusii intron is inserted at the same position as the fourth intron of the psbA gene from Chlamydomonas reinhardtii; the second intron lies at a novel site downstream of this position. On the basis of their RNA secondary structures, the C. moewusii introns 1 and 2 can be assigned to subgroups IA and IB, respectively. However, intron 1 is not typical of subgroup IA introns, its most unusual feature being the location of the ORF in the "loop L5" region. To our knowledge, this is the first time that an ORF is located in this region of the group I intron structure.  相似文献   

16.
17.
Swi1 is required for programmed pausing of replication forks near the mat1 locus in the fission yeast Schizosaccharomyces pombe. This fork pausing is required to initiate a recombination event that switches mating type. Swi1 is also needed for the replication checkpoint that arrests division in response to fork arrest. How Swi1 accomplishes these tasks is unknown. Here we report that Swi1 copurifies with a 181-amino-acid protein encoded by swi3(+). The Swi1-Swi3 complex is required for survival of fork arrest and for activation of the replication checkpoint kinase Cds1. Association of Swi1 and Swi3 with chromatin during DNA replication correlated with movement of the replication fork. swi1Delta and swi3Delta mutants accumulated Rad22 (Rad52 homolog) DNA repair foci during replication. These foci correlated with the Rad22-dependent appearance of Holliday junction (HJ)-like structures in cells lacking Mus81-Eme1 HJ resolvase. Rhp51 and Rhp54 homologous recombination proteins were not required for viability in swi1Delta or swi3Delta cells, indicating that the HJ-like structures arise from single-strand DNA gaps or rearranged forks instead of broken forks. We propose that Swi1 and Swi3 define a fork protection complex that coordinates leading- and lagging-strand synthesis and stabilizes stalled replication forks.  相似文献   

18.
ERCC4 is an essential human gene in the nucleotide excision repair (NER) pathway, which is responsible for removing UV-C photoproducts and bulky adducts from DNA. Among the NER genes, ERCC4 and ERCC1 are also uniquely involved in removing DNA interstrand cross-linking damage. The ERCC1-ERCC4 heterodimer, like the homologous Rad10-Rad1 complex, was recently found to possess an endonucleolytic activity that incises on the 5' side of damage. The ERCC4 gene, assigned to chromosome 16p13.1-p13.2, was previously isolated by using a chromosome 16 cosmid library. It corrects the defect in Chinese hamster ovary (CHO) mutants of NER complementation group 4 and is implicated in complementation group F of the human disorder xeroderma pigmentosum. We describe the ERCC4 gene structure and functional cDNA sequence encoding a 916-amino-acid protein (104 kDa), which has substantial homology with the eukaryotic DNA repair and recombination proteins MEI-9 (Drosophila melanogaster), Rad16 (Schizosaccharomyces pombe), and Rad1 (Saccharomyces cerevisiae). ERCC4 cDNA efficiently corrected mutants in rodent NER complementation groups 4 and 11, showing the equivalence of these groups, and ERCC4 protein levels were reduced in mutants of both groups. In cells of an XP-F patient, the ERCC4 protein level was reduced to less than 5%, consistent with XPF being the ERCC4 gene. The considerable identity (40%) between ERCC4 and MEI-9 suggests a possible involvement of ERCC4 in meiosis. In baboon tissues, ERCC4 was expressed weakly and was not significantly higher in testis than in nonmeiotic tissues.  相似文献   

19.
We have identified genomic clones and corresponding cDNAs that encode a putative peroxidase of Drosophila melanogaster. The gene (DmPO) appears as a single copy gene located on the third chromosome at position 89 D/E. It is interrupted by seven small introns and one unusually large 5' intron (about 11 kb). Sequence analysis of the cDNA showed an open reading frame of 690 amino acids resulting in a protein of 77 kDa. The deduced amino acid sequence reveals an overall homology to myeloeosinophil and thyroid peroxidase, a human superfamily of peroxidases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号