首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The sites of cleavage on the map of the broad-host-range plasmid RK2 (56 kilobases) were determined for the BglII, PstI, and SmaI restriction enzymes, and the determinants for tetracycline and ampicillin resistance were localized. The cleavage sites were clustered at or near the drug resistance genes. To localize regions required for plasmid replication and maintenance in Escherichia coli, we deleted nonessential regions of RK2 by partial digestion with the restriction endonuclease HaeII to produce small derivatives. The smallest stable replicon obtained contained five HaeII fragments of RK2 which total 5.4 kilobases. These fragments were derived from three regions of RK2 that are separated from each other by antibiotic resistance genes. One of these HaeII fragments (0.75 kilobases) has the properties expected of the origin of replication. The outer four fragments, located in two separate regions of RK2, were found to provide, in trans, functions that permit the replication of the HaeII fragment carrying the origin of the replication. These results indicate that at least two plasmid-encoded genes, capable of acting in trans, and a replication origin are required for RK2 replication and maintenance.  相似文献   

2.
Starting from pAO3, a plasmid consisting of a quarter of colicinogenic factor E1 (ColE1) DNA, various small ColE1 derivatives were constructed by in vitro recombination and their ability to achieve autonomous replication was examined. The 436 base pair HaeIII-C fragment of pAO3 contained information for replication when it was recombined with the non-replicating Amp fragment. However, when it was connected to other DNA fragments, the resulting hybrid molecules were not isolated as plasmids. The present results indicate that the additional region of about 240 base pairs next to the HaeIII-C fragment of ColE1 is also essential for the maintenance of a plasmid state. Moreover, using various small ColE1 derivatives, the DNA region responsible for the interference and incompatibility functions of ColE1 DNAs was located. The results indicate that the interference and incompatibility functions are coded by the same ColE1 DNA segment and are not essential for the maintenance of a plasmid state.  相似文献   

3.
An Escherichia coli mutant (polA1), defective in deoxyribonucleic acid (DNA) polymerase I, (EC 2.7.7.7) is unable to maintain colicinogenic factor E1 (ColE1), whereas several sex factor plasmids are maintained normally in this strain. polA1 mutant strains containing these sex factor plasmids do not exhibit a readily detectable plasmid-induced polymerase activity. A series of E. coli mutants that are temperature sensitive for ColE1 maintenance, but able to maintain other plasmids, were isolated and shown to fall into two phenotypic groups. Mutants in one group are defective specifically in ColE1 maintenance at 43 C, but exhibit normal DNA polymerase I activity. Mutations in the second group map in the polA gene of E. coli, and bacteria carrying these mutations are sensitive to methylmethanesulfonate (MMS). Revertants that were selected either for MMS resistance or the ability to maintain ColE1 were normal for both properties. The DNA polymerase I enzyme of two of these mutants shows a pronounced temperature sensitivity when compared to the wild-type enzyme. An examination of the role of DNA polymerase I in ColE1 maintenance indicates that it is essential for normal replication of the plasmid. In addition, the presence of a functional DNA polymerase I in both the donor and recipient cell is required for the ColV-promoted conjugal transfer of ColE1 and establishment of the plasmid in the recipient cell.  相似文献   

4.
This report describes a method for isolating mutants of plasmid ColE1 that exhibit unstable maintenance and altered replication characteristics. It also describes the initial characterization of four mutants isolated by that method. A chimeric plasmid, pHSG124, containing a ColE1 derivative and a temperature-sensitive replication derivative of pSC101 was mutagenized in vitro, using hydroxylamine. By adjusting the growth conditions of transformants containing the mutagenized chimeric deoxyribonucleic acid, it was possible to rapidly screen colonies and identify those that had a high probability of carrying ColE1 mutants that exhibit unstable maintenance. Of those mutants, some exhibited altered copy number or accumulated catenated structures. Evidence is presented which suggests that the mutations in three of the mutants are probably located in the HaeII A fragment of ColE1.  相似文献   

5.
Deletions of colicin E1 (colE1) plasmid deoxyribonucleic acid (DNA) carrying the TnA transposon have been isolated. All except two were generated by nuclease digestion of plasmid DNA from its EcoRI-sensitive site. A plasmid containing about 16% of the ColE1 DNA (6.5 X 10(5) daltons) was generated that also contained the part of the TnA transposon conferring ampicillin resistance. The extents of different deletions were determined by analysis of restriction endonuclease fragments generated by the restriction endonucleases HaeII, BamHI, and HincII.  相似文献   

6.
R J Zagursky  M L Berman 《Gene》1984,27(2):183-191
We have constructed chimeric plasmid vectors with the origin and intergenic region from M13 phage cloned into the PvuII ( pZ145 ) and AhaIII ( pZ150 , pZ152 ) sites of pBR322. In the absence of M13 phage, these plasmids replicate like any other ColE1-derived plasmid and confer both ampicillin and tetracycline resistance (Amp, Tet). Upon infection with M13 phage, the viral origin present on the plasmids permits phage-directed plasmid replication and results in high yields of single-stranded (ss) plasmid DNA in M13-like particles. This ssDNA, which represents only one of the plasmid strands, is useful as a substrate for rapid DNA sequence determination by the dideoxy sequencing method described by Sanger et al. (1977). Since these plasmids contain an intact pBR322, the intergenic region can be transferred onto most pBR322 derivatives to yield ss plasmid DNA without affecting the recipient plasmid for further studies. We also constructed a deletion derivative of pZ145 , plasmid pZ146 , that does not exhibit interference with the growth of the M13 helper, although this plasmid is encapsidated into phage particles. This result confirms the theory that the intergenic region consists of two domains: one domain being a segment involved in phage morphogenesis and the other being a region of functional origin which interferes with M13 replication.  相似文献   

7.
Construction and characterization of a class of multicopy plasmid cloning vehicles containing the replication system of miniplasmid P15A are described. The constructed plasmids have cleavage sites within antibiotic resistance genes for a variety of commonly employed site-specific endonucleases, permitting convenient use of the insertional inactivation procedure for the selection of clones that contain hybrid DNA molecules. Although the constructed plasmids showed DNA sequence homology with the ColE1 plasmid within the replication region, were amplifiable by chloramphenicol or spectinomycin, required DNA polymerase I for replication, and shared other replication properties with ColE1, they were nevertheless compatible with ColE1. P15A-derived plasmids were not self-transmissible and were mobilized poorly by Hfr strains; however, mobilization was complemented by the presence of a ColE1 plasmid within the same cell.  相似文献   

8.
Homology between Escherichia coli plasmids ColE1 and p15A.   总被引:1,自引:0,他引:1       下载免费PDF全文
The location and extent of the homology between plasmids ColE1 and p15A were determined by analysis of heteroduplexes formed between them as well as with a related plasmid, pBR322, and by hybridization of radioactive deoxyribonucleic acids to restriction fragments of p15A and ColE1. The homology between the plasmids contained the entire region of ColE1 required for its replication as well as an additional 400 base pairs downstream from the origin of replication. This region on p15A, which was 980 +/- 43 base pairs, started at 0.1 of the molecular length from one end formed by cleavage with the restriction endonuclease BglI and extended to 0.54 of the molecular length from the same end. Restriction cleavage maps for the enzymes BglI, HpaI, HaeII, HaeIII, and HincII are also presented.  相似文献   

9.
RNase H and replication of ColE1 DNA in Escherichia coli   总被引:3,自引:1,他引:2       下载免费PDF全文
Amber mutations within the rnh (RNase H) gene of Escherichia coli K-12 were isolated by selecting for bacteria capable of replicating in a sup+ background replication-defective cer-6 mutant of the ColE1 replicon. The cer-6 mutation is an alteration of one base pair located 160 nucleotides upstream of the unique replication origin of this plasmid. Subsequently, we determined the DNA alterations present within these mutants. ColE1 DNA replicated in rnh(Am) recA cells, indicating that (i) RNase H, which has been shown to be absolutely required for in vitro initiation of ColE1 DNA replication, is dispensable in vivo, and (ii) ColE1 replication in the absence of RNase H is not dependent on "stable DNA replication," which has been reported to be an alternative mode of chromosomal DNA replication. Another class of bacterial mutations was also isolated. These mutations, named herB, suppressed cer-6 replication in rnh+ bacteria. herB mutations mapped close to the polA gene on the E. coli chromosome and increased the activity of DNA polymerase I. These findings suggest that when the DNA polymerase I has an opportunity to initiate DNA synthesis before RNase H acts, the replication-defective cer-6 mutant or the wild-type ColE1 replicates in E. coli.  相似文献   

10.
Summary We developed an in vitro replication system for ColE2 and ColE3 plasmids using cell extracts prepared from bacteria with or without these plasmids. DNA synthesis depended on host DNA polymerase I and was sensitive to rifampicin and chloramphenicol. Preincubation of the extracts with plasmid DNA, however, allowed replication of template DNA added subsequently in a plasmid-specific manner in the presence of rifampicin and chloramphenicol. The plasmid-specified trans-acting factor(s) was detected in cell extracts from bacteria carrying a recombinant plasmid with the region of ColE2 or ColE3 encoding the Rep protein. The plasmid-specified factor(s) consisted at least in part of protein, probably the Rep protein. In vitro replication started within a region of ColE2 or ColE3 containing the smallest cis-acting segment essential for in vivo replication and proceeded in a fixed direction.  相似文献   

11.
The plasmid ColE2-P9 origin is a 32-bp region which is specifically recognized by the plasmid-specified Rep protein to initiate DNA replication. We analyzed the structural and functional organization of the ColE2 origin by using various derivatives carrying deletions and single-base-pair substitutions. The origin may be divided into three subregions: subregion I, which is important for stable binding of the Rep protein; subregion II, which is important for binding of the Rep protein and for initiation of DNA replication; and subregion III, which is important for DNA replication but apparently not for binding of the Rep protein. The Rep protein might recognize three specific DNA elements in subregions I and II. The relative transformation frequency of the autonomously replicating plasmids carrying deletions in subregion I is lower, and nevertheless the copy numbers of these plasmids in host bacteria are higher than those of the wild-type plasmid. Efficient and stable binding of the Rep protein to the origin might be important for the replication efficiency to be at the normal (low) level. Subregion II might be essential for interaction with the catalytic domain of the Rep protein for primer RNA synthesis. The 8-bp sequence across the border of subregions II and III, including the primer sequence, is conserved in the (putative) origins of many plasmids, the putative Rep proteins of which are related to the ColE2-P9 Rep protein. Subregion III might be required for a step that is necessary after Rep protein binding has taken place.  相似文献   

12.
J Miller  J Manis  B Kline  A Bishop 《Plasmid》1978,1(3):273-283
When folded chromosomes are purified from plasmid-containing bacteria, a reproducible fraction of the host's covalently closed, circular (CCC) plasmid DNA copurifies with the chromosomes. From this copurification, we infer the existence of nonintegrative plasmid-chromosome (NPC) complexes. Previously, we noted that plasmids dependent on DNA polymerase III and with stringent control of replication complex to a greater extent than plasmids dependent on DNA polymerase I and with relaxed control of replication. We have examined this subject in more depth and find that: (i) The composite plasmids formed by in vitro recombination of a “stringent” with a “relaxed” replicon complex to chromosomes at the frequency of the component replicon which directs replication; (ii) all of the detectable replicative intermediates, but only 25% of the CCC forms, of plasmid ColE1 complex to chromosome; and (iii) when a mini-F plasmid is deleted for the DNA sequences which include the primary origin of replication, the complexing frequency decreases 30 to 40%. We conclude from these findings that NPC complexes either indirectly or directly relate to plasmid replication. Further, we find that the EcoRI kan+ fragments of pML31 and the ampicillin resistance transposon, Tn3, promote complexing of both ColE1 and mini-F plasmids to host chromosomes. The biological significance of this latter complexing is unknown. However, we conclude from these studies and from point (iii) that complexing is determined in part by unique plasmid sequences.  相似文献   

13.
The phenomenon of incompatibility has been investigated using deletion mutants of hybrid bireplicon plasmid pAS8. The hybrid pAS8 displays incompatibility specific for both components of its structure. In contrast to P-specificity of pAS8, functions of ColE1-specificity are not effectively expressed. Expression of ColE1-specificity in pAS8 plasmid and its derivatives is characterized by different directions and this is due to the presence or absence of genes of RP4 replication machinery in the plasmid DNA. Mutant plasmids show different efficiency of P-specificity depending on the extension of deletion in the region of essential genes of the RP4 component. Some of the mutants, in spite of the loss of replication genes, including origin of vegetative replication, are incompatible with the representatives of the Inc P group in both directions of testing. Different character and the level of expression of ColE1- and P-specificity in the pAS8 hybrid and its deletion derivatives are not associated with change in the number of plasmid DNA copies, for all of them are subjects to stringent control of replication. The data suggest the existence of incompatibility functions control mechanism which does not seem to include replication genes. Possible ways of realization of the inc genes functions are discussed.  相似文献   

14.
To facilitate recombination-based screening, we constructed the ColE1-based plasmid, pi G4, that confers chloramphenicol resistance, contains a polylinker with multiple unique restriction enzyme recognition sequences, and contains the genetic marker, supF. To facilitate recombination-based screening followed by rapid DNA sequencing, we inserted the selectable marker, supF, into each of 20 high-copy-number (hcn) pUC-derived NoC plasmids that were designed for multiplex DNA sequencing. To facilitate recombination-based screening of common cDNA libraries that often contain ColE1 sequences, we constructed a supF-carrying plasmid whose replication was driven from an R6K replicon that does not share sequence homology with ColE1. Furthermore, we incorporated a useful polylinker and increased the copy number of this plasmid to create the 4.4-kb hcn plasmid, pMAD1. Thus, these plasmids allow: (1) background-free transformation of cells by a supF plasmid carrying an antibiotic-resistance marker; (2) simultaneous performance of the recombination-based assay and DNA sequencing; and (3) screening bacteriophage cDNA libraries that contain ColE1 sequences by recombination with a supF plasmid that is not homologous to ColE1 derivatives.  相似文献   

15.
16.
Deletion mutants of plasmid ColE1 that involve the replication origin and adjacent regions of the plasmid have been studied to determine the mechanism by which those mutations affect the expression of plasmid incompatibility. It was observed that (i) a region of ColE1 that is involved in the expression of plasmid incompatibility lies between base pairs -185 and -684; (ii) the integrity of at least part of the region of ColE1 DNA between base pairs -185 and -572 is essential for the expression of ColE1 incompatibility; (iii) the expression of incompatibility is independent of the ability of the ColE1 genome to replicate autonomously; (iv) plasmid incompatibility is affected by plasmid copy number; and (v) ColE1 plasmid-mediated DNA replication of the lambda phage-ColE1 chimera lambda imm434 Oam29 Pam3 ColE1 is inhibited by ColE1-incompatible but not by ColE1-compatible plasmids.  相似文献   

17.
Summary We have localized the regions sufficient for autonomous replication on the genomes of the colicin E2 (ColE2) and colicin E3 (ColE3) plasmids and analyzed the replication functions carried by these regions. A 1.3 kb segment of each plasmid is sufficient for autonomous replication. Plasmids carrying this segment retain the replication properties of the original plasmid. The 1.3 kb segment consists of three functional portions. Firstly, a 0.9 kb region which specifies at least one trans-acting factor required for replication of each plasmid. Secondly, a 0.4 kb region located adjacent to one end of the 0.9 kb region, which is required for expression of the trans-acting factor(s) and probably contains the promoter. The region across the border of these two portions of ColE2 is involved in copy number control of the plasmid. The third portion is a 50 bp region adjacent to the other end of the 0.9 kb region, which contains a cis-acting site (origin) where replication initiates in the presence of the trans-acting factor(s). The action of the trans-acting factor(s) on the origin is plasmid specific. The 50 bp regions functioning as the origins of replication of ColE2 and ColE3 are the smallest among those in prokaryotic replicons so far identified and analyzed.  相似文献   

18.
Summary The sequence of the PcnB protein of Escherichia coli, a protein required for copy number maintenance of ColE1-related plasmids, was compared with the PIR sequence database. Strong local similarities to the sequence of the E. coli protein tRNA nucleotidyltransferase were found. Since a substrate of the latter protein, tRNA, structurally resembles the RNAs that control ColE1 copy number we believe that we may have identified a region in PcnB that interacts with these RNAs. Consistent with this idea is our observation that PcnB is required for the replication of R1, a plasmid whose replication is also regulated by a small RNA.  相似文献   

19.
Genetic organization of the broad-host-range IncP-1 plasmid R751.   总被引:31,自引:23,他引:8       下载免费PDF全文
We have identified regions encoding conjugal transfer, plasmid maintenance, and trimethoprim resistance on the IncP-1 plasmid R751 by complementation tests with cloned deoxyribonucleic acid fragments and self-replicating derivatives constructed in vitro. The genes for replication and transfer show a scattered organization similar to that previously determined for RK2, another IncP-1 plasmid. Derivatives of RK2 are able to complement R751 derivatives defective in these functions. Restriction enzyme cleavage sites in R751 deoxyribonucleic acid are clustered in regions of the plasmid physical map. Neither region is required for plasmid maintenance or transfer, although one determines resistance to trimethoprim. A similar clustering of cleavage sites is seen with RK2, which nevertheless has a very different restriction map.  相似文献   

20.
Temperature-sensitive mutants of Escherichia coli defective in the replication of the plasmid colicinogenic factor E1 (ColE(1)) were isolated following mutagenesis of E. coli K12 strain carrying the ColE(1) factor. Following the mutagenic treatment an enrichment procedure utilizing the replacement of thymine with bromouracil in the ColE(1) DNA duplicated at the restrictive temperature was used. The mutants isolated following this enrichment step were the result of a mutation event either in the host chromosome or in the ColE(1) plasmid. The host mutants fell into three phenotypic classes based on the effect each mutation had on the maintenance of a variety of other extrachromosomal DNA elements. Phenotypic class I mutations affected all E. coli plasmids, both the I and F sex factor types as well as the ColE(1) factor. Phenotypic class II mutations affected the maintenance of the ColE(1) and the F sex factor type plasmids and not the I type, while phenotypic class III mutations affected only ColE(1) replication. None of these mutations was found to have a significant effect on the replication of the E. coli chromosome. The plasmid-linked mutations fell into two phenotypic classes on the basis of the ability of the Flac episome to complement the mutation in the ColE(1) plasmid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号