首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This paper describes experiments on the kinetics of inhibition of muscle differentiation in vitro in the presence of 5-bromodeoxyuridine (BrdUrd) and the recovery phenomena that occur when such inhibited cells are permitted growth in normal medium. The studies consist of a quantitation of cell fusion in the presence of the analog and during recovery in its absence coupled with simultaneous studies on changes in buoyant density of cellular DNA. We find that if myoblasts are exposed to BrdUrd during the last doubling before cell fusion would normally occur, most cells do not differentiate, but as many as 18% of the cells can fuse in spite of the incorporation of BrdUrd into their nuclei. These nuclei contain approximately the amount of BrdUrd expected for a full round of DNA synthesis. Studies on the rate of recovery of inhibition of cell fusion following one generation in BrdUrd reveal that after one doubling of inhibited cells in the presence of normal medium. fusion reaches about 50% of the control value; after two doublings it reaches 75% of control value; and after 2.5 doublings of reversal, recovery is essentially complete. We find that both the degree of inhibition after approximately one round of BrdUrd incorporation and the rate of cell differentiation after two generations of reversal are consistent with a model which assumes that BrdUrd “sensitivity” resides on single pair of chromosomes and that inhibition occurs in a dominant fashion if approximately 30% or more of the thymidine is replaced by BrdUrd in the readout strand of either chromosome.  相似文献   

3.
Cathepsin C, a lysosomal dipeptidyl aminopeptidase, is competitively and reversibly inhibited by guanidinium ions with a Ki approximately 1.5 mM. Loss of activity is not the result of conformational change, subunit dissociation or altered mobility of the enzyme, but rather reflects a specific binding of guanidinium ions to the active site. The finding that cathepsin C is not inhibited by substrate has allowed the kinetic parameters in the presence of guanidinium ion to be determined. Guanidinium significantly decreases the Km of substrate hydrolysis, without changing Vmax. In a novel application of the transferase reaction, the Km of the nucleophile substrate has been determined (11 mM) and found not to be affected by guanidinium, indicating its inhibition of substrate binding to the S, but not the S', site. Inhibition is suggested to be the result of shielding a negative charge on the enzyme important for interaction with the substrate.  相似文献   

4.
Recent clinical studies such as HOPE, SECURE, and APRES show that angiotensin-converting enzyme (ACE) inhibitors like ramipril improve the prognosis of patients with a high risk of atherothrombotic cardiovascular events. Atherosclerosis, as a chronic inflammatory condition of the vascular system, can turn into an acute clinical event through the rupture of a vulnerable atherosclerotic plaque followed by thrombosis. ACE inhibition has a beneficial effect on the atherogenic setting and on fibrinolysis. Endothelial dysfunction is the end of a common process in which cardiovascular risk factors contribute to inflammation and atherogenesis. By inhibiting the formation of angiotensin II, ACE inhibitors prevent any damaging effects on endothelial function, vascular smooth muscle cells, and inflammatory vascular processes. An increase in the release of NO under ACE inhibition has a protective effect. Local renin-angiotensin systems in the tissue are involved in the inflammatory processes in the atherosclerotic plaque. Circulating ACE-containing monocytes, which adhere to endothelial cell lesions, differentiate within the vascular wall to ACE-containing macrophages or foam cells with increased local synthesis of ACE and angiotensin II. Within the vascular wall, angiotensin II decisively contributes to the instability of the plaque by stimulating growth factors, adhesion molecules, chemotactic proteins, cytokines, oxidized LDL, and matrix metalloproteinases. Suppression of the increased ACE activity within the plaque can lead to the stabilization and deactivation of the plaque by reducing inflammation in the vascular wall, thus lessening the risk of rupture and thrombosis and the resultant acute clinical cardiovascular events. The remarkable improvement in the long-term prognosis of atherosclerotic patients with increased cardiovascular risk might be the clinical result of the contribution made by ACE inhibition in the vascular wall.  相似文献   

5.
自噬是一种在正常细胞和病理状态细胞中普遍存在的生理机制。自噬与肿瘤细胞的生存与凋亡关系密切,在很多肿瘤细胞中,其自噬活性均有改变。抑制肿瘤细胞中自噬活动可以促进肿瘤细胞的凋亡。在化疗诱导肿瘤细胞凋亡的同时,以自噬抑制剂抑制肿瘤细胞的自噬活动,可改善肿瘤的治疗效果。  相似文献   

6.
7.
8.
Endotoxin inhibits the in vitro migration of macrophages. Macrophages which have been stimulated by intraperitoneal oil (Marcol) are more sensitive to the endotoxin than are nonstimulated, normal macrophages. Other factors appear to affect the sensitivity of macrophages and there is great variation between individual animals. This effect is not due to toxicity since the macrophages remain viable. Furthermore, it can be reversed by the addition of polymyxin B. This action appears to be a direct effect on macrophages since it is still evident with viable, enriched populations. The action of endotoxin can be potentiated by exposure of macrophages to lymphocyte supernatants containing migration-inhibition factor. The action is not potentiated by periodate treatment. In this situation the two effects are additive. It is suggested that some of the variability in the migration-inhibition factor assay might be due to contaminating endotoxin. Endotoxin has been found to contaminate most biological materials. The degree of contamination might well influence the level of activation of the macrophage, and thus the responsiveness to migration-inhibition factor. This work supports the concept that the macrophage needs to be at a certain level of activation to respond to migration-inhibition factor. It is clear that the presence of contaminating endotoxin needs to be considered, and prevented, in all work on migration-inhibition factor.  相似文献   

9.
10.
11.
Angiogenesis, the process by which new blood vessels are formed is critical for embryonic development and physiological functioning of normal tissues. Angiogenesis also plays a critical role in the pathology of many diseases including cancer, wherein the supply and demand for blood vessels determines the rate of cancer growth. A number of therapeutic strategies are being developed to inhibit pathological angiogenesis. Kringle domains of plasminogen such as kringle 5 (K5) and a proteolytic fragment of collagen type XVIII (endostatin) are well-characterized, potent angiogenesis inhibitors. These inhibitors activate different intracellular signaling pathways to induce apoptosis and inhibit cell proliferation. Recent studies from our group have shown that K5 and endostatin can also induce autophagy in addition to apoptosis in endothelial cells. A common feature of the two treatments was the upregulation of Beclin 1 levels leading to alterations in the Beclin 1-Bcl-2 complex. Angiogenesis inhibitor-induced autophagy in endothelial cells was independent of nutritional or hypoxic stress and initiated even in the presence of endothelial-specific survival factors such as vascular endothelial growth factor (VEGF). Interfering with the autophagic response by knocking down Beclin 1 levels dramatically increased apoptosis of endothelial cells. These findings identify the autophagic response as a novel target for enhancing the therapeutic efficacy of angiogenesis inhibitors.  相似文献   

12.
13.
Oligomycin sensitive, membrane bound ATPase of beef heart mitochondria is strongly inhibited by the lipophilic chelator bathophenanthroline. The inhibition is reversed by uncouplers such as carbonyl-cyanide-3-chlorophenyl hydrazone but not by ionophores such as gramacidin. Oligomycin-insensitive soluble ATPase is not inhibited by bathophenanthroline. Since the inhibition effects parallel bathophenanthroline inhibition of electron transport associated with coupling sites and uncoupler reversal is similar we propose metalloproteins function at the juncture of the electron transport and energy coupling systems.  相似文献   

14.
15.
16.
17.
AlkB is one of four proteins involved in the adaptive response to DNA alkylation damage in Escherichia coli and is highly conserved from bacteria to humans. Recent analyses have verified the prediction that AlkB is a member of the Fe(II) and 2-oxoglutarate (2OG)-dependent oxygenase family of enzymes. AlkB mediates repair of methylated DNA by direct demethylation of 1-methyladenine and 3-methylcytosine lesions. Other members of the Fe(II) and 2OG-dependent oxygenase family, including those involved in the hypoxic response, are targets for therapeutic intervention. Assays measuring 2OG turnover were used to investigate the selectivity of AlkB. 1-Methyladenosine, 1-methyl-2'-deoxyadenosine, 3-methylcytidine, and 3-methyl-2'-deoxycytidine all stimulated 2OG turnover by AlkB but were not demethylated indicating an uncoupling of 2OG and prime substrate oxidation and that oligomeric DNA is required for hydroxylation and subsequent demethylation. In contrast the equivalent unmethylated nucleosides did not stimulate 2OG turnover indicating that the presence of a methyl group in the substrate is important in initiating oxidation of 2OG. Stimulation of 2OG turnover by 1-methyladenosine was highly dependent on the presence of a reducing agent, ascorbate or dithiothreitol. Following the observation that AlkB is inhibited by high concentrations of 2OG, analogues of 2OG, including 2-mercaptoglutarate, were found to specifically inhibit AlkB. The flavonoid quercetin inhibits both AlkB and the 2OG oxygenase factor-inhibiting hypoxia-inducible factor (FIH) in vitro. FIH inhibition by quercetin occurs in the presence of excess iron indicating a specific interaction, while the inhibition of AlkB by quercetin is, predominantly, due to nonspecific iron chelation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号