首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The imino proton spectrum of Escherichia coli valine tRNA has been studied by two-dimensional nuclear Overhauser effect spectroscopy (NOESY) in H2O solution. The small nuclear Overhauser effects from the imino proton of an internal base pair to the imino protons of each nearest neighbor can be observed as off-diagonal cross-peaks. In this way most of the sequential NOE connectivity trains for all the helices in this molecule can be determined in a single experiment. AU resonances can be distinguished from GC resonances by the AU imino NOE to the aromatic adenine C2-H, thus leading to specific base-pair assignments. In general, the NOESY spectrum alone is not capable of assigning every imino proton resonance even in well-resolved tRNA spectra. Multiple proton peaks exhibit more than two cross-peaks, resulting in ambiguous connectivities, and coupling between protons with similar chemical shifts produces cross-peaks that are incompletely resolved from the diagonal. The sequence of the particular tRNA determines the occurrence of the latter problem, which can often be solved by careful one-dimensional experiments. The complete imino proton assignments of E. coli valine tRNA are presented.  相似文献   

2.
We report complete sequence-specific proton resonance assignments for the trypsin-solubilized microsomal ferrocytochrome b5 obtained from calf liver. In addition, sequence-specific resonance assignments for the main-chain amino acid protons (i.e., C alpha, C beta, and amide protons) are also reported for the porcine cytochrome b5. Assignment of the majority of the main-chain resonances was rapidly accomplished by automated procedures that used COSY and HOHAHA peak coordinates as input. Long side chain amino acid spin system identification was facilitated by long-range coherence-transfer experiments (HOHAHA). Problems with resonance overlap were resolved by examining differences between the two-dimensional 500-MHz NMR spectra of rabbit, pig, and calf proteins and by examining the temperature-dependent variation of amide proton resonances. Calculations of the aromatic ring-current shifts for protons that the X-ray crystal structure indicated were proximal to aromatic residues were found to be useful in corroborating assignments, especially those due to the large shifts induced by the heme. Assignment of NOESY cross peaks was greatly facilitated by a prediction of intensities using a complete relaxation matrix analysis based on the crystal structure. These results suggest that the single-crystal X-ray structure closely resembles that of the solution structure although there is evidence that the solution structure has a more dynamic character.  相似文献   

3.
Sequence-specific 1H NMR assignments are reported for the active L-tryptophan-bound form of Escherichia coli trp repressor. The repressor is a symmetric dimer of 107 residues per monomer; thus at 25 kDa, this is the largest protein for which such detailed sequence-specific assignments have been made. At this molecular mass the broad line widths of the NMR resonances preclude the use of assignment methods based on 1H-1H scalar coupling. Our assignment strategy centers on two-dimensional nuclear Overhauser spectroscopy (NOESY) of a series of selectively deuterated repressor analogues. A new methodology was developed for analysis of the spectra on the basis of the effects of selective deuteration on cross-peak intensities in the NOESY spectra. A total of 90% of the backbone amide protons have been assigned, and 70% of the alpha and side-chain proton resonances are assigned. The local secondary structure was calculated from sequential and medium-range backbone NOEs with the double-iterated Kalman filter method [Altman, R. B., & Jardetzky, O. (1989) Methods Enzymol. 177, 218-246]. The secondary structure agrees with that of the crystal structure [Schevitz, R., Otwinowski, Z., Joachimiak, A., Lawson, C. L., & Sigler, P. B. (1985) Nature 317, 782], except that the solution state is somewhat more disordered in the DNA binding region and in the N-terminal region of the first alpha-helix. Since the repressor is a symmetric dimer, long-range intersubunit NOEs were distinguished from intrasubunit interactions by formation of heterodimers between two appropriate selectively deuterated proteins and comparison of the resulting NOESY spectrum with that of each selectively deuterated homodimer. Thus, from spectra of three heterodimers, long-range NOEs between eight pairs of residues were identified as intersubunit NOEs, and two additional long-range intrasubunits NOEs were assigned.  相似文献   

4.
The local structure (torsion angles phi, psi and chi 1 of amino acid residues) of insectotoxin I5A (35 residues) of scorpion Buthus eupeus has been determined from cross-peak integral intensities in two-dimensional nuclear Overhauser enhancement (NOESY) spectra and spin coupling constants of vicinal H--NC alpha--H and H--C alpha C beta--H protons. The local structure determination was carried out by fitting complete relaxation matrix of peptide unit protons (protons of a given residue and NH proton of the next residue in the amino acid sequence) with experimental NOESY cross-peak intensities. The obtained intervals of backbone torsional angles phi and psi consistent with NMR data were determined for all but Gly residues. The predominant C alpha--C beta rotamer of the side chain has been unambiguously determined for 42% of the insectotoxin amino acid residues whereas for another 46% residues experimental data are fitted equally well with two rotamers. Stereospecific assignments were obtained for 38% of beta-methylene groups. The determined torsional angles phi, psi and chi 1 correspond to the sterically allowed conformations of the amino acid residues and agree with the insectotoxin secondary structure established earlier by 1H NMR spectroscopy.  相似文献   

5.
The solution structure of the phosphocarrier protein, HPr, from Bacillus subtilis has been determined by analysis of two-dimensional (2D) NMR spectra acquired for the unphosphorylated form of the protein. Inverse-detected 2D (1H-15N) heteronuclear multiple quantum correlation nuclear Overhauser effect (HMQC NOESY) and homonuclear Hartmann-Hahn (HOHAHA) spectra utilizing 15N assignments (reported here) as well as previously published 1H assignments were used to identify cross-peaks that are not resolved in 2D homonuclear 1H spectra. Distance constraints derived from NOESY cross-peaks, hydrogen-bonding patterns derived from 1H-2H exchange experiments, and dihedral angle constraints derived from analysis of coupling constants were used for structure calculations using the variable target function algorithm, DIANA. The calculated models were refined by dynamical simulated annealing using the program X-PLOR. The resulting family of structures has a mean backbone rmsd of 0.63 A (N, C alpha, C', O atoms), excluding the segments containing residues 45-59 and 84-88. The structure is comprised of a four-stranded antiparallel beta-sheet with two antiparallel alpha-helices on one side of the sheet. The active-site His 15 residue serves as the N-cap of alpha-helix A, with its N delta 1 atom pointed toward the solvent to accept the phosphoryl group during the phosphotransfer reaction with enzyme I. The existence of a hydrogen bond between the side-chain oxygen atom of Tyr 37 and the amide proton of Ala 56 is suggested, which may account for the observed stabilization of the region that includes the beta-turn comprised of residues 37-40. If the beta alpha beta beta alpha beta (alpha) folding topology of HPr is considered with the peptide chain polarity reversed, the protein fold is identical to that described for another group of beta alpha beta beta alpha beta proteins that include acylphosphatase and the RNA-binding domains of the U1 snRNP A and hnRNP C proteins.  相似文献   

6.
Two-dimensional proton NMR experiments have been used to sequentially assign resonances to all of the peptide backbone protons of turkey ovomucoid third domain (OMTKY3) except those of the N-terminal alpha-amino group whose signal was not resolved owing to exchange with the solvent. Assignments also have been made for more than 80% of the side-chain protons. Two-dimensional chemical shift correlated spectroscopy (COSY), relayed coherence transfer spectroscopy (RELAY), and two-dimensional homonuclear Hartmann-Hahn spectroscopy (HOHAHA) were used to identify the spin systems of almost half of the residues prior to sequential assignment. Assignments were based on two-dimensional nuclear Overhauser enhancements observed between adjacent residues. The secondary structure of OMTKY3 in solution was determined from additional assigned NOESY cross-peaks; it closely resembles the secondary structure determined by single-crystal X-ray diffraction of OMTKY3 in complex with Streptomyces griseus proteinase B [Fujinaga, M., Read, R.J., Sielecki, A., Ardelt, W., Laskowski, M., Jr., & James, M.N.G. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 4868-4872]. The NMR data provide evidence for three slowly exchanging amide protons that were not identified as hydrogen-bond donors in the crystal structure.  相似文献   

7.
A sequential assignment procedure is outlined, based on two-dimensional NOE ( NOESY ) and two-dimensional J-correlated spectroscopy ( COSY ), for assigning the nonexchangeable proton resonances in NMR spectra of oligonucleotides. As presented here the method is generally applicable to right-handed helical oligonucleotides of intermediate size. We applied it to a lac operator DNA fragment consisting of d( TGAGCGG ) and d( CCGCTCA ) and obtained complete assignments for the adenine H8, guanine H8, cytosine H6 and H5, thymine H6 and 5-methyl, and the deoxyribose H1', H2', H2", H3', and H4' resonances, as well as some H5', H5" (pairwise) assignments. These assignments are required for the analysis of two-dimensional NOE and J-coupling data in terms of the solution structure of oligonucleotides.  相似文献   

8.
Circular dichroism and two-dimensional NMR spectra indicate that a peptide fragment consisting of the first 28 residues from the N-terminus of human growth hormone (hGH 1-28) has considerable alpha-helical structure. The peptide, (1) H-Phe-Pro-Thr-Ile-Pro-Leu-Ser-Arg-Leu-Phe-Asp-Asn-Ala-Met-Leu-Arg-Ala-Hi s-Arg- Leu-His-Gln-Leu-Ala-Phe-Asp-Thr-Tyr-OH (28), was synthesized on an automated peptide synthesizer using the Merrifield solid-phase method. The peptide can be modeled as an amphiphilic helix, and the unusual stability of the alpha-helix in aqueous solution is suggested to be attributable to formation of a dimer of alpha-helices. Most of the 1H NMR signals were assigned through pure absorption phase COSY/NOESY and single- and double-relay COSY 2D NMR spectra by using the sequential assignment methodology. The NOEs were large and negative, suggesting that the peptide was not a random coil and that it existed in solution primarily as a large, fairly rigid macromolecule, consistent with the dimer structure. A network of N alpha Hi-N alpha Hi+1 NOESY crosspeaks is observed from residues 13 to 18 as are several other crosspeaks which indicate that the peptide has considerable alpha-helical structure between residues 8 and 24. In addition, gel filtration of the peptide is consistent with a dimer structure, presumably involving packing of the two hydrophobic faces of the amphiphilic alpha-helices.  相似文献   

9.
A peptide of 17 amino acid residues Ac-L-K-W-K-K-L-L-K-L-L-K-K-L-L-K-L-G-NH2, designed to form an amphiphilic basic alpha-helix [DeGrado, W.F., Prendergast, F. G., Wolfe, H. R., Jr., & Cox, J. A. (1985) J. Cell. Biochem. 29, 83-93], was labeled with 15N at positions 1, 7, 9, and 10. Homo- and heteronuclear NMR techniques were used to characterize the conformational changes of the peptide when it binds to calmodulin in the presence of Ca2+ ions. The spectrum of the free peptide in aqueous solution at pH 6.3 and 298 K was completely assigned by a combined application of several two-dimensional proton NMR methods. Analysis of the short- and medium-range NOE connectivities and of the secondary chemical shifts indicated that the peptide populates, to a significant extent, an alpha-helix conformational state, in agreement with circular dichroism measurements under similar physicochemical conditions. 15N-edited 1D spectra and 15N(omega 2)-half-filtered two-dimensional NMR experiments on the peptide in a 1:1 complex with calmodulin allowed assignment of half of the amide proton resonances and three C alpha H resonances of the bound peptide. The observed NOE connectivities between the peptide backbone protons are indicative of a stable helical secondary structure spanning at least the fragment L1-K11. The equilibrium and dynamic NMR parameters of the bound peptide are discussed in terms of a molecular interaction model.  相似文献   

10.
Two-dimensional 1H NMR methods and a knowledge of the X-ray crystal structure have been used to make resonance assignments for the amino acid side chains of dihydrofolate reductase from Escherichia coli complexed with methotrexate. The H7 proton on the pteridine ring of methotrexate was found to have NOEs to the methyl protons of Leu-28 which were assigned by using the L28F mutant. These NOEs indicated that the orientation of the methotrexate pteridine ring is similar in both solution and crystal structures. During the initial assignment process, it became evident that many of the resonances in this complex, unlike those of the folate complex, are severely broadened or doubled. The observation of two distinct sets of resonances in a ratio of approximately 2:1 was attributed to the presence of two protein isomers. At 303 K, NOESY spectra with mixing times of 100 ms did not show interconversion between these isomers. However, exchange cross-peaks were observed in a 700-ms NOESY spectrum at 323 K which demonstrated that these isomers are interconverting slowly on the NMR time scale. Many of the side chains with clearly doubled resonances were located in the beta-sheet and the active site. Preliminary studies on the apoprotein also revealed doubled resonances in the absence of the inhibitor, indicating the existence of the protein isomers prior to methotrexate binding. In contrast to the methotrexate complex, the binary complex with folate and the ternary MTX-NADPH-DHFR complex presented a single enzyme form. These results are proposed to reflect the ability of folate and NADPH to bind predominantly to one protein isomer.  相似文献   

11.
The proton and nitrogen (15NH-H alpha-H beta) resonances of bacteriophage T4 lysozyme were assigned by 15N-aided 1H NMR. The assignments were directed from the backbone amide 1H-15N nuclei, with the heteronuclear single-multiple-quantum coherence (HSMQC) spectrum of uniformly 15N enriched protein serving as the master template for this work. The main-chain amide 1H-15N resonances and H alpha resonances were resolved and classified into 18 amino acid types by using HMQC and 15N-edited COSY measurements, respectively, of T4 lysozymes selectively enriched with one or more of alpha-15N-labeled Ala, Arg, Asn, Asp, Gly, Gln, Glu, Ile, Leu, Lys, Met, Phe, Ser, Thr, Trp, Tyr, or Val. The heteronuclear spectra were complemented by proton DQF-COSY and TOCSY spectra of unlabeled protein in H2O and D2O buffers, from which the H beta resonances of many residues were identified. The NOE cross peaks to almost every amide proton were resolved in 15N-edited NOESY spectra of the selectively 15N enriched protein samples. Residue specific assignments were determined by using NOE connectivities between protons in the 15NH-H alpha-H beta spin systems of known amino acid type. Additional assignments of the aromatic proton resonances were obtained from 1H NMR spectra of unlabeled and selectively deuterated protein samples. The secondary structure of T4 lysozyme indicated from a qualitative analysis of the NOESY data is consistent with the crystallographic model of the protein.  相似文献   

12.
M Adler  H A Scheraga 《Biochemistry》1990,29(36):8211-8216
The peptide bonds preceding both Pro-93 and Pro-114, which are in the cis conformation in native RNase A, are predominantly in the trans conformation in the heat-unfolded protein. The percentages are estimated to be 60% and 63%, respectively, with a standard deviation of +/- 7% in each quantity. These ratios are close to those found for corresponding sequences in X-Pro-Y peptides. The concentration of the trans proline species was determined from the integrated intensities of resonance peaks of the C alpha H protons of Tyr-92 and Asn-113, which are well resolved in the 1D proton NMR spectrum of heat-unfolded RNase A. The assignments of the resonances were deduced from 2D NOESY and DQF-COSY spectra of unfolded RNase A in D2O. Furthermore, the C alpha H protons of both Tyr-92 and Asn-113 had an intense NOE cross-peak with the C delta H and C delta' H of the respective following prolines. For both Pro-93 and Pro-114, these NOE cross-peaks would arise only if the X-Pro peptide bond were in the trans conformation. It is generally believed that the rate of refolding of RNase A is considerably reduced by nonnative proline isomers, such as trans Pro-93. Two models for folding RNase A, that are consistent with these new results and the work of previous investigators, are presented here.  相似文献   

13.
Sequence-specific resonance assignments for the isolated second or b domain of the bovine seminal fluid protein PDC-109 have been obtained from analysis of two-dimensional 1H NMR experiments recorded at 500 MHz. These assignments include the identification of all aromatic and most aliphatic amino acid resonances. Stereospecific assignment of resonances stemming from the Val2 CH3 gamma,gamma' groups and from seven CH beta,beta' geminal pairs has been accomplished by analysis of 3J alpha beta coupling constants in conjunction with patterns of cross-peak intensities observed in two-dimensional nuclear Overhauser effect (NOESY) spectra. Analysis of NOESY and 3J alpha NH data reveals a small antiparallel beta-sheet involving stretches containing residues 25-28 and 39-42, a cis-proline residue (Pro4), antiparallel strands consisting of residues 1-3, 5-7, and 10-13, and an aromatic cluster composed of Tyr7, Trp26, and Tyr33. The results of distance geometry and restrained molecular dynamics calculations indicate that the global fold of the PDC-109 b domain, a type II module related to those found in fibronectin, is somewhat different from that predicted by modeling the structure on the basis of homology between type II and kringle units. A shallow depression in the molecular surface which presents a solvent-exposed hydrophobic area--a potential ligand-binding site-is identified in the NMR-based models.  相似文献   

14.
Native intact bovine PTH was studied by proton nuclear magnetic resonance (NMR) techniques, at pH 3.5 and pH 6.3. The 1H-NMR spectra had good resolution and many multiplet structures were observed. Assignment of the NMR resonances corresponding to specific amino acids was approached using 1H chemical shifts, coupling constants, and pH dependence in the one-dimensional spectra and the 1H-1H connectivities revealed in two-dimensional homonuclear correlated spectroscopy (COSY) experiments. All the aromatic proton resonances were assigned. Two histidine residues had lower pK than the other two. The methyl groups of two residues were moved significantly downfield: using COSY and two-dimensional nuclear Overhauser enhancement spectroscopy (NOESY) correlations, these were assigned to an alanine residue close to both Trp-23 and Tyr-43, and a valine residue in close spatial proximity to Trp-23. The NOESY spectrum also showed cross-peaks between the residues of the upfield valine-leucine-isoleucine methyl envelope. Many of the H alpha protons moved upfield as the pH was increased. These results indicate that intact native PTH exists in a preferred conformation in solution at pH 6.5. Our studies have provided new information on the three-dimensional spatial proximity of several amino acids along the polypeptide chain. The observed interactions are consistent with the currently accepted model suggesting that the hormone has two separate structural domains associated with the amino- and carboxy-terminal regions of the molecule respectively. The potential implications of this model for the expression of biological activity are discussed.  相似文献   

15.
W Eberle  W Klaus  G Cesareni  C Sander  P R?sch 《Biochemistry》1990,29(32):7402-7407
The complete resonance assignment of the ColE1 rop (rom) protein at pH 2.3 was obtained by two-dimensional (2D) proton nuclear magnetic resonance spectroscopy (1H NMR) at 500 and 600 MHz using through-bond and through-space connectivities. Sequential assignments and elements of regular secondary structure were deduced by analysis of nuclear Overhauser enhancement spectroscopy (NOESY) experiments and 3JHN alpha coupling constants. One 7.2-kDa monomer of the homodimer consists of two antiparallel helices connected by a hairpin loop at residue 31. The C-terminal peptide consisting of amino acids 59-63 shows no stable conformation. The dimer forms a four-helix bundle with opposite polarization of neighboring elements in agreement with the X-ray structure.  相似文献   

16.
The solution conformation of a model hexapeptide Asp-Arg-Gly-Asp-Ser-Gly (DRGDSG) containing the RGD sequence has been studied in DMSO-d6 as well as in aqueous solution (H2O:D2O/90:10%) by 1H NMR spectroscopy. The unambiguous identification of spin systems of various amino acid residues and sequence specific assignment of all proton resonances was achieved by a combination of two dimensional COSY and NOESY experiments. The temperature coefficient data of the amide proton chemical shifts in conjunction with the vicinal coupling constants, i.e. 3JNH-C alpha H, NOESY and ROESY results indicate that the peptide in both the solvents exists in a blend of conformers with beta-sheet like extended backbone structure and folded conformations. The folded conformers do not appear to be stabilised by intramolecular hydrogen bonding. Our results are consistent with the flexibility of RGD segment observed in the NMR studies on the protein echistatin containing the RGD motif (references 23-25).  相似文献   

17.
The solution structure of neuronal bungarotoxin (nBgt) has been studied by using two-dimensional 1H NMR spectroscopy. Sequence-specific assignments for over 95% of the backbone resonances and 85% of the side-chain resonances have been made by using a series of two-dimensional spectra at four temperatures. From these assignments over 75% of the NOESY spectrum has been assigned, which has in turn provided 582 distance constraints. Twenty-seven coupling constants (NH-alpha CH) were determined from the COSY spectra, which have provided dihedral angle constraints. In addition, hydrogen exchange experiments have suggested the probable position of hydrogen bonds. The NOE constraints, dihedral angle constraints, and the rates of amide proton exchange suggest that a triple-stranded antiparallel beta sheet is the major component of secondary structure, which includes 25% of the amino acid residues. A number of NOE peaks were observed that were inconsistent with the antiparallel beta-sheet structure. Because we have confirmed by sedimentation equilibrium that nBgt exists as a dimer, we have reinterpreted these NOE constraints as intermolecular interactions. These constraints suggest that the dimer consists of a six-stranded antiparallel beta sheet (three from each monomer), with residues 55-59 forming the dimer interface.  相似文献   

18.
Quantitative method is developed for evaluation interproton distances in peptides in solution. The method is based on the measurement of the relative intensities of the cross-peaks in the pure-phase absorption NOESY spectra. The ratios of the cross-peak intensities IN alpha/I alpha N and INN/I alpha N enable to determine the corresponding interproton distances dN alpha, d alpha N and dNN for several amino acid residues. These distances can be used to estimate other distances with cross-peaks in NOESY spectra. As example, the interproton distances are determined in a cyclic hexapeptide, namely cyclic analogue of substance P: cyclo [H-Glu-Phe-Phe-Gly-Leu-Met-NH(CH2)3-NH-]. The spatial structure of the molecule in dimethylsulphoxide solution is established.  相似文献   

19.
A uniformly 15N-labeled recombinant light-chain variable (VL) domain from the anti-digoxin antibody 26-10 has been investigated by heteronuclear two-dimensional (2D) and three-dimensional (3D) NMR spectroscopy. Complementary homonuclear 2D NMR studies of the unlabeled VL domain were also performed. Sequence-specific assignments for 97% of the main-chain and 70% of the side-chain proton resonances have been obtained. Patterns of nuclear Overhauser effects observed in 2D NOESY, 3D NOESY-HSQC, and 3D NOESY-TOCSY-HSQC spectra afford a detailed characterization of the VL domain secondary structure in solution. The observed secondary structure--a nine-stranded antiparallel beta-barrel--corresponds to that observed crystallographically for VL domains involved in quaternary associations. The locations of slowly exchanging amide protons have been discerned from a 2D TOCSY spectrum recorded after dissolving the protein in 2H2O. Strands B, C, E, and F are found to be particularly stable. The possible consequences of these results for domain-domain interactions are discussed.  相似文献   

20.
Assignments for 1H NMR resonances of 121 of the 129 residues of hen egg white lysozyme have been obtained by sequence-specific methods. Spin systems were identified with phase-sensitive two-dimensional (2-D) correlated spectroscopy and single and double relayed coherence transfer spectroscopy. For key types of amino acid residues, particularly alanine, threonine, valine, and glycine, complete spin systems were identified. For other residues a less complete definition of the spin system was found to be adequate for the purpose of sequential assignment. Sequence-specific assignments were achieved by phase-sensitive 2-D nuclear Overhauser enhancement spectroscopy (NOESY). Exploitation of the wide range of hydrogen exchange rates found in lysozyme was a useful approach to overcoming the problem of spectral overlap. The sequential assignment was built up from 21 peptide segments ranging in length from 2 to 13 residues. The NOESY spectra were also used to provide information about the secondary structure of the protein in solution. Three helical regions and two regions of beta-sheet were identified from the NOESY data; these regions are identical with those found in the X-ray structure of hen lysozyme. Slowly exchanging amides are generally correlated with hydrogen bonding identified in the X-ray structure; a number of exceptions to this general trend were, however, found. The results presented in this paper indicate that highly detailed information can be obtained from 2-D NMR spectra of a protein that is significantly larger than those studied previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号