首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to investigate the immunohistochemical distribution of laminin, vimentin and desmin during the implantation period in the rat since ECM remodelling and the expression of intermediate filaments (Ifs) is essential for successful decidualization and implantation. On day 4 of pregnancy, laminin was found in a few endometrial stromal cells (ESC), the basement membrane of the numerous endometrial blood vessels, in endometrial glands and as well as in the uterine epithelium. The localization of vimentin on day 4 of pregnancy was widespread in the ESC. However, desmin immunoreactivity was low in ESC on this day of pregnancy. On day 6 of pregnancy, laminin and vimentin were localized in the decidual area underlying luminal epithelium and around the implanting embryo. Additionally, desmin was found to be present densely in decidual cells of the anti-mesometrial region where implantation takes place. Finally, on day 8 of pregnancy, laminin was present in decidual and parietal endodermal cells, whereas vimentin was immunolocalized in primary and secondary decidual regions in the endometrium. In contrast, desmin was detected in some parts of the secondary decidual zone. In conclusion, these proteins could have crucial roles in decidualization and implantation.  相似文献   

2.
Nidogen-1 binds several basement membrane components by well-defined, domain-specific interactions. Organ culture and gene targeting approaches suggest that a high-affinity nidogen-binding site of the laminin gamma1 chain (gamma1III4) is important for kidney development and for nerve guidance. Other proteins may also bind gamma1III4, although human nidogen-2 binds poorly to the mouse laminin gamma1 chain. We therefore characterized recombinant mouse nidogen-2 and its binding to basement membrane proteins and cells. Mouse nidogen-1 and -2 interacted at comparable levels with collagen IV, perlecan, and fibulin-2 and, most notably, also with laminin-1 fragments P1 and gamma1III3-5, which both contain the gamma1III4 module. In embryos, nidogen-2 mRNA was produced by mesenchyme at sites of epithelial-mesenchymal interactions, but the protein was deposited on epithelial basement membranes, as previously shown for nidogen-1. Hence, binding of both nidogens to the epithelial laminin gamma1 chain is dependent on epithelial-mesenchymal interactions. Epidermal growth factor stimulated expression of both nidogens in embryonic submandibular glands. Both nidogens were found in all studied embryonic and adult basement membranes. Nidogen-2 was more adhesive than nidogen-1 for some cell lines and was mainly mediated by alpha3beta1 and alpha6beta1 integrins as shown by antibody inhibition. These findings revealed extensive coregulation of nidogen-1 and -2 expression and much more complementary functions of the two nidogens than previously recognized.  相似文献   

3.
Embryo implantation into the maternal uterus is a crucial step for the successful establishment of mammalian pregnancy. Following the attachment of embryo to the uterine luminal epithelium, uterine stromal cells undergo steroid hormone-dependent decidualization, which is characterized by stromal cell proliferation and differentiation. The mechanisms underlying steroid hormone-induced stromal cell proliferation and differentiation during decidualization are still poorly understood. Ribonucleotide reductase, consisting of two subunits (RRM1 and RRM2), is a rate-limiting enzyme in deoxynucleotide production for DNA synthesis and plays an important role in cell proliferation and tumorgenicity. Based on our microarray analysis, Rrm2 expression was significantly higher at implantation sites compared with interimplantation sites in mouse uterus. However, the expression, regulation, and function of RRM2 in mouse uterus during embryo implantation and decidualization are still unknown. Here we show that although both RRM1 and RRM2 expression are markedly induced in mouse uterine stromal cells undergoing decidualization, only RRM2 is regulated by progesterone, a key regulator of decidualization. Further studies showed that the induction of progesterone on RRM2 expression in stromal cells is mediated by the AKT/c-MYC pathway. RRM2 can also be induced by replication stress and DNA damage during decidualization through the ATR/ATM-CHK1-E2F1 pathway. The weight of implantation sites and deciduoma was effectively reduced by specific inhibitors for RRM2. The expression of decidual/trophoblast prolactin-related protein (Dtprp), a reliable marker for decidualization in mice, was significantly reduced in deciduoma and steroid-induced decidual cells after HU treatment. Therefore, RRM2 may be an important effector of progesterone signaling to induce cell proliferation and decidualization in mouse uterus.  相似文献   

4.
Successful embryo implantation depends on intricate epithelial-stromal cross-talk. However, molecular modulators involved in this cellular communication remain poorly elucidated. Using multiple approaches, we have investigated the spatiotemporal expression and regulation of serine protease inhibitor Kazal type 3 (SPINK3) in mouse uterus during the estrous cycle and early pregnancy. In cycling mice, both SPINK3 mRNA and protein are only expressed during proestrus. In the pregnant mouse, the expression levels of both SPINK3 mRNA and protein increase on days 5-8 and then decline. Spink3 mRNA is expressed exclusively in the uterine glandular epithelium, whereas SPINK3 protein is localized on the surface of both luminal and glandular epithelium and in the decidua. Moreover, SPINK3 in the decidua has been observed in the primary decidual zone on day 6 and the secondary decidual zone on days 7-8; this is tightly associated with the progression of decidualization. SPINK3 has also been found in decidual cells of the artificially decidualized uterine horn but not control horn, whereas Spink3 mRNA localizes in the glands of both horns. The expression of endometrial Spink3 is not regulated by the blastocyst according to its expression pattern during pseudopregnancy and delayed implantation but is induced by progesterone and further augmented by a combination of progesterone and estrogen in ovariectomized mice. Thus, uterine-gland-derived SPINK3, as a new paracrine modulator, might play an important role in embryo implantation through its influence on stromal decidualization in mice.  相似文献   

5.
Embryonic development of the Chinese hamster (Cricetulus griseus) was studied from the onset of implantation to the formation of the parietal yolk sac placenta. Implantation began on day 6 of pregnancy, when the embryo became fixed to the uterine luminal epithelium. At this time there was no zona pellucida, and microvilli of the trophoblast and uterine epithelium were closely apposed. Stromal cells immediately adjacent to the implantation chamber began to enlarge and accumulate glycogen. By day 7 the mural trophoblast penetrated the luminal epithelium in discrete area. The trophoblast appeared to phagocytize uterine epithelial cells, although epithelium adjoining the points of penetration was normal. In other areas nascent apical protrusions from the uterine epithelium indented the surface of the trophoblast. The epiblast had enlarged and both visceral and parietal endoderm cells were present. The well-developed decidual cells were epithelioid and completely surrounded the implantation chamber. On day 8 the uterine epithelium had disappeared along the mural surface of the embryo. The embryonic cell mass was elongated and filled the yolk sac cavity. Reichert's membrane was well developed. The uterine epithelial basal lamina was largely disrupted, and the trophoblast was in direct contact with decidual cells. Primary and secondary giant trophoblast cells were present and in contact with extravasated maternal blood. The mural trophoblast formed channels in which blood cells were found in close proximity to Reichert's membrane. Decidual cells were in contact with capillary epithelium and in some cases formed part of the vessel wall. Structural changes occurring in the embryo and endometrium during implantation in the Chinese hamster are described for the first time in this report and are compared to those described for some other myomorph rodents.  相似文献   

6.
Stathmin, a cytosolic phosphoprotein that regulates microtubule dynamics during cell-cycle progression, is abundantly expressed at embryo implantation sites in rats. Here, we characterized the expression of stathmin and its family genes in the murine uterus during the peri-implantation period. Stathmin protein was expressed in the glandular and luminal epithelium, blood vessels, and stromal cells on day 3 of pregnancy. On the day of implantation (day 5), stathmin was mainly localized in blood vessels in the endometrium. On day 7, intense stathmin expression was limited to capillary vessels and secondary decidual cells. Stathmin expression was higher at implantation sites than at uterine segments between implantation sites and increased during oil-induced decidualization. Although the artificially-induced deciduoma weights and number of implantation sites were similar between stathmin-knockout (KO) and wild-type (WT) mice, the stathmin-KO mice had fewer newborn pups (reduced by 30%). The expression of alkaline phosphatase, desmin, and cyclin D3 was attenuated in decidual zones of stathmin-KO mice. Messenger RNA level of the stathmin family gene, SCG10, was high at the time of decidualization in WT and stathmin-KO mice. In contrast, the others of stathmin family members, SCLIP and RB3 were highly expressed in stathmin-KO mice compared to WT mice. These results suggest that stathmin and stathmin family genes are expressed in the murine endometrium with enhanced expression in the implantation or the decidualization process.  相似文献   

7.
Though the decidua serves a critical function in implantation, the hormonal regulated pathway in decidualization is still elusive. Here we describe in detail the regional distribution and the effects of progesterone receptors (PGR), estrogen receptors (ESR), and MAPK activation on decidualization. We showed an increase in PGR A, PGR B, ESR1, and phosphorylated MAPK3-1 proteins (p-MAPK3-1), but not in ESR2, in the decidual tissue up to Day 8 of pregnancy. PGR was predominantly found in the nuclei of mesometrial decidual cells and of undifferentiated stromal cells where it colocalizes with ESR2 and ESR1. In the antimesometrial decidua, all the receptors showed cytoplasmic localization. MAPK was activated exclusively in undifferentiated stromal cells of the junctional zone between the antimesometrial and mesometrial decidua and at the border of the antimesometrial decidua. Treatment with the progesterone antagonist onapristone and/or the estrogen antagonist faslodex reduced the extent of decidual tissue and downregulated the levels of PGR and ESR1. The expression level of ESR2 was affected only by the progesterone receptor antagonist, while neither the antiprogestin nor the antiestrogen significantly modified the p-MAPK3-1 level. The inhibition of MAPK3-1 phosphorylation by PD98059 impaired the extent of decidualization and the closure reaction of the implantation chamber, and significantly downregulated ESR1. These results confirm a role of both steroid receptors in the growth and differentiation of the different decidual regions and suggest a new function for p-MAPK3-1 in regulating expression levels of ESR1, thereby maintaining the proliferation capacity of stromal cells and limiting the differentiation process in specified regions of decidual tissues.  相似文献   

8.
9.
10.
Efficient transfer of glucose from the mother to the embryonic compartment is crucial to sustain the survival and normal development of the embryo in utero, because the embryo's production of this primary substrate for oxidative metabolism is minimal. In the present study, the temporal sequence of expression of the sodium-independent facilitative glucose transporter isoforms GLUTs 1, 3, 4, and 5 was investigated in the developing rat uteroembryonic unit between conception and Gestational Day 8 using immunohistochemistry. The GLUTs 1, 3, and 4 were expressed in the embryonic tissues after the start of implantation, being colocalized in the parietal endoderm, visceral endoderm, primary ectoderm, extraembryonic ectoderm, and the ectoplacental cone. In the uterus, a faint GLUT1 labeling emerged, but not until Gestational Day 3, in the luminal epithelium, endometrial stroma, and decidual cells. The intensity of GLUT1 staining increased in the latter population with progressing decidualization. Endometrial glands and myometrial smooth muscle cells stained neither for GLUT1 nor for GLUT3 until postimplantation. During all developmental stages examined, GLUT4 was visualized throughout the pregnant rat uterus, as was GLUT3 (with the above-mentioned exceptions). The density of GLUT5 was generally less than the sensitivity of the immunohistochemical detection method in all tissues investigated. In conclusion, the data point to a significant expression of the high-affinity glucose transporters GLUTs 1, 3, and 4 in the rat uteroembryonic unit, providing supportive evidence for an important role of facilitative glucose diffusion during peri-implantation development.  相似文献   

11.
12.
Adenosine deaminase (ADA) is expressed in high concentrations at the fetal-maternal interface during postimplantation stages of gestation in the mouse. The experiments reported here were designed to identify the specific uterine cells that express ADA subsequent to implantation in the rat and to determine if embryonic cells contribute to ADA expression. The results of biochemical analysis demonstrate that ADA-specific activity increases to very high levels in implantation sites, beginning approximately 72 h after blastocyst attachment. Immunocytochemical analysis localized this ADA expression to the decidualized stromal cells in the antimesometrial region of the pregnant uterus. In experimentally induced deciduoma, these cells were capable of synthesizing high levels of both ADA and mRNA for ADA in the absence of embryos. The enzyme first appeared in decidual cell cytoplasm, approximately 72 h after induction of decidualization, and later was localized in the decidual cell nuclei. Since the expression of ADA and its mRNA in decidual cells follows the appearance of desmin, a protein marker for decidualization, by at least 48 h, ADA appears to be involved in the functioning of mature decidual cells rather than in stromal cell differentiation. The expression of ADA, but not desmin, was restricted to the antimesometrial decidual cells and decreased when these cells regressed. At mid-gestation ADA activity increased and was localized principally in the fetal placenta. The results presented here demonstrate that ADA is localized to the antimesometrial decidual cell and that its expression is consequent to differentiation of the uterine stromal cell and independent of any embryonic stimulus.  相似文献   

13.
14.
Uterine decidualization, characterized by stromal cell proliferation and differentiation into polyploid decidual cells, is critical to the establishment of pregnancy in mice, although the mechanism underlying this process remains poorly understood. This study is the first to investigate the expression of gamma‐amino butyric acid (GABA) and the GABA A‐type receptor π subunit (GABPR) in the early‐pregnancy mouse uterus and their roles in decidualization. The expression of GABRP was detected from Day 4 to 8 of pregnancy. The effects of GABA and GABA A‐type receptor on cell proliferation and apoptosis were investigated using the Cell Titer 96® AQueous One Solution Cell Proliferation Assay and flow cytometry. The levels of cyclin D3 protein were measured in cultured stromal cells artificially induced to undergo decidualization, and treated with GABA and a GABA A‐type receptor agonist or antagonist, respectively, at the same time. mRNA expression of gabrp in implantation sites was lower than that in inter‐implanted sites. GABA and GABRP protein were localized in the luminal and glandular epithelium, stromal cells, and decidual cells. In vitro, GABPR protein level was decreased in cultured stromal cells during the decidualization process. The addition of GABA and the GABA A‐type receptor agonist Muscimol inhibited stromal cell proliferation, promoted apoptosis, and arrested cells in S‐phase, followed by decreased expression of cyclin D3. These results show that in mice, GABA was actively involved in inhibiting stromal cell proliferation and suppresses decidualization progress through GABA A‐type receptors by down‐regulating cyclin D3 level. Mol. Reprod. Dev. 80: 59–69, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Embryo implantation is an essential step for a successful pregnancy, and any defect in this process can lead to a range of pregnancy pathologies. The objective of this study was to explore the role of N‐myc downregulated gene 1 (NDRG1) in embryo implantation. It was found that uterine NDRG1 expression has a dynamic pattern during the estrous cycle in nonpregnant mice and that uterine NDRG1 expression was elevated during the implantation process in pregnant mice. The distinct accumulation of NDRG1 protein signals was observed in the primary decidual zone adjacent to the implanting embryo during early pregnancy. Furthermore, uterine NDRG1 expression could be induced by activated implantation or artificial decidualization in mice. Decreased uterine NDRG1 expression was associated with pregnancy loss in mice and was associated with recurrent miscarriages in humans. The in vitro decidualization of both mouse and human endometrial stromal cells (ESCs) was accompanied by increased NDRG1 expression and downregulated NDRG1 expression in ESCs effectively inhibited decidualization. Collectively, these data suggest that NDRG1 plays an important role in decidualization during the implantation process, and the abnormal expression of NDRG1 may be involved in pregnancy loss.  相似文献   

16.
Embryo implantation into the maternal uterus is a decisive step for successful mammalian pregnancy. Osteopontin (OPN) is a member of the small integrin-binding ligand N-linked glycoprotein family and participates in cell adhesion and invasion. In this study, we showed that Opn mRNA levels are up-regulated in the mouse uterus on day 4 and at the implantation sites on days 5 and 8 of pregnancy. Immunohistochemistry localized the OPN protein to the glandular epithelium on day 4 and to the decidual zone on day 8 of pregnancy. OPN mRNA and proteins are induced by in vivo and in vitro decidualization. OPN expression in the endometrial stromal cells is regulated by progesterone, a key regulator during decidualization. As a secreted protein, the protein level of OPN in the uterine cavity is enriched on day 4, and in vitro embryo culturing has indicated that OPN can facilitate blastocyst hatching and adhesion. Knockdown of OPN attenuates the adhesion and invasion of blastocysts in mouse endometrial stromal cells by suppressing the expression and enzymatic activity of matrix metalloproteinase-9 in the trophoblast. Our data indicated that OPN expression in the mouse uterus during early pregnancy is essential for blastocyst hatching and adhesion and that the knockdown of OPN in mouse endometrial stroma cells could lead to a restrained in vitro trophoblast invasion.  相似文献   

17.
18.
Serine protease inhibitor (Serpin) B11 has been identified as a novel serine protease inhibitor but the biological functions of SerpinB11 in female reproduction are unknown. Therefore, we investigate the spatiotemporal expression and regulation of SerpinB11 during the peri-implantation period. SerpinB11 mRNA and protein were detected in the uteri of pregnant mice on days 1–8 (day 1?=?presence of a vaginal plug). SerpinB11 protein was localized in the embryonic implantation site on day 5 when embryo implantation occurred and was also strongly expressed in the primary decidual zone on day 6 and secondary decidual zone on days 7 and 8. The expression of SerpinB11 was induced by the activated blastocyst (based on patterns of expression during pseudopregnancy and delayed implantation) and by artificially induced decidualization. Moreover, expression of SerpinB11 was regulated by estradiol and progesterone in ovariectomized mice. The results were further supported by data from the estrous cycle. Thus, SerpinB11 is probably involved in embryo implantation and decidualization.  相似文献   

19.
Prostaglandins (PGs) appear to have a role in the appearance of the increased uterine vascular permeability and subsequent decidualization observed at implantation in many species. However, the sites of production of these PGs have not been clearly established. To clarify the PG synthetic capacity of the blastocyst and the various types of cells in the uterus at implantation, we have studied the immunohistochemical localization of PG synthase in the rat blastocyst on Days 5 to 7 and uterus on Days 1, 4, 5, 6, and 7 of pregnancy. Labeling of PG synthase was negligible in the uterus on Day 1 of pregnancy. On Day 4, there was increased labeling in the luminal and glandular epithelium, in stromal cells adjacent to the luminal epithelium, and in blood vessels and some leukocytes. PG synthase was detected in the blastocysts on Days 5 to 7, but there was a gradual loss of label in the luminal and glandular epithelial cells during this period. Early differentiating stromal cells adjacent to the luminal epithelium in the implantation site on Day 5 showed bright labeling, whereas peripheral stromal cells were only slightly labeled. By Day 7, the differentiated cells of the primary decidual zone showed little or no label, but cells in the secondary decidual zone were brightly labeled. These results indicate that PG synthase is present in the rat blastocyst and in several kinds of uterine cells, and that its localization in uterine cells changed markedly during the implantation process.  相似文献   

20.
Periimplantation mouse embryos and uterine tissues were examined by means of immunohistochemistry for their expression of the Ca2+ dependent cell-cell adhesion molecules, E- and P-cadherin. E-cadherin was detected in all embryonic cells during periimplantation stages, and also detected in the uterine epithelium. When blastocysts attached to the uterine epithelium, E-cadherin was detected at implantation sites between the mural trophectoderm and the uterine epithelium on 5 day of pregnancy. P-cadherin was first detected in the mural trophectoderm on 4.5-day blastocysts, and then detected in the ectoplacental cone, giant cells and visceral endoderm from 5.5 day.
P-cadherin was also detected in the maternal uterine decidual cells from 5.5 day. After degeneration of uterine epithelial cells, giant cells make direct contact with uterine decidual cells, and P-cadherin was detected at contact sites between these cells.
Thus, the complicated process of implantation seems to be supported by temporal and spatial expression of the multiple classes of cadherins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号