首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maxwell TA  Jennings S 《Oecologia》2006,150(2):282-290
Abundance–body size relationships are widely observed macroecological patterns in complete food webs and in taxonomically or functionally defined subsets of those webs. Observed abundance–body size relationships have frequently been compared with predictions based on the energetic equivalence hypothesis and, more recently, with predictions based on energy availability to different body size classes. Here, we consider the ways in which working with taxonomically or functionally defined subsets of food webs affected the relationship between the predicted and observed scaling of biomass and body mass in sediment dwelling benthic invertebrate communities at three sites in the North Sea. At each site, the energy available to body size classes in the “whole” community (community defined as all animals of 0.03125–32.0 g shell-free wet weight) and in three subsets was predicted from estimates of trophic level based on nitrogen stable isotope analysis. The observed and predicted scalings of biomass and body size were not significantly different for the whole community, and reflected an increase in energy availability with body size. However, the results for subsets showed that energy availability could increase or decrease with body size, and that individuals in the subsets were likely to be competing with individuals outside the subsets for energy. We conclude that the study of abundance–body mass relationships in functionally or taxonomically defined subsets of food webs is unlikely to provide an adequate test of the energetic equivalence hypothesis or other relationships between energy availability and scaling. To consistently and reliably interpret the results of these tests, it is necessary to know about energy availability as a function of body size both within and outside the subset considered.  相似文献   

2.
3.
The energetic equivalence rule (EER), which is derived from empirical observations linking population density and body size and from the allometric law linking metabolism and body size, predicts that the amount of energy used by the various species should be independent of body size. Here, we examine this hypothesis using a model that allows entire food webs to emerge from coevolution of interacting species. Body size influences both individual metabolism and interactions among species in the model. Overall, population density does decrease with body size roughly following a power law whose exponent is variable. We discuss this variability in the light of empirical data sets. The emerging relationship between the flux of resources exploited by the various species and their body size follows a decreasing power law, thus contradicting the EER. Our model emphasizes the importance of considering the influence of body size on species interactions in attempting to explain large-scale patterns related to body size.  相似文献   

4.
Patterns in benthic food webs: a role for omnivorous crayfish?   总被引:10,自引:0,他引:10  
1. The biomass and species richness of macrophytes and invertebrates in artificial ponds at two sites in southern Sweden (twenty-one ponds at each site) were investigated. Alkalinity was high at one site (H ponds) and low at the other site (L ponds). The ponds chosen had different densities of signal crayfish (Pacifastacus leniusculus), with mean crayfish abundance (estimated by trapping and expressed as catch per unit effort) significantly higher in the L ponds (10.7) than in the H ponds (4.9). Macrophytes, invertebrates, the amount of periphyton on stones and the organic content of the sediment were determined in each pond. 2. Macrophyte biomass, cover and species richness declined with increasing crayfish density. Macrophyte species composition differed between ponds and was related to crayfish abundance. 3. The total biomass of invertebrates and the biomass of herbivorous/detritivorous invertebrates declined with increasing crayfish abundance, but the biomass of predatory invertebrates declined only in the L ponds. The relative biomass of Gastropoda and Odonata declined in ponds where crayfish were abundant. In ponds where crayfish were abundant the invertebrate fauna was dominated by sediment-dwelling taxa (Sialis (H and L ponds) and Chironomidae (H ponds)). 4. The number of invertebrate taxa in macrophytes declined with increasing crayfish abundance. The percentage of macrophyte-associated invertebrate taxa differed between ponds, but also between sites. The relative biomass of Gastropoda declined in H ponds where crayfish were abundant. In H ponds Trichoptera or Gammarus sp. and Heteroptera dominated where crayfish were abundant, whereas Odonata dominated in L ponds with abundant crayfish. 5. The organic content of the sediment decreased in ponds with high crayfish densities, while the amount of periphyton on stones was not related to crayfish density. 6. We conclude that the signal crayfish may play an important role as a keystone consumer in pond ecosystems, but lower trophic levels did not respond to changes in the abundance of the crayfish according to the trophic cascade model. Omnivorous crayfish may decouple the cascading effect.  相似文献   

5.
Walz  N.  Sarma  S. S. S.  Benker  U. 《Hydrobiologia》1995,313(1):165-170
Egg sizes and body sizes of 43 egg-bearing rotifer species of numerous, mostly tropical, general have been recorded. Larger absolute egg volumes have been found for larger rotifer species, but the increase was lower than expected in proportion to body size, i.e. the relative egg volume decreased with increasing body size. Obviously the relative investment per offspring is smaller in larger rotifer species.  相似文献   

6.

Background and Aims

Many recent studies show that plant–pollinator interaction webs exhibit consistent structural features such as long-tailed distributions of the degree of generalization, nestedness of interactions and asymmetric interaction dependencies. Recognition of these shared features has led to a variety of mechanistic attempts at explanation. Here it is hypothesized that beside size thresholds and species abundances, the frequency distribution of sizes (nectar depths and proboscis lengths) will play a key role in determining observed interaction patterns.

Methods

To test the influence of size distributions, a new network parameter is introduced: the degree of size matching between nectar depth and proboscis length. The observed degree of size matching in a Spanish plant–pollinator web was compared with the expected degree based on joint probability distributions, integrating size thresholds and abundance, and taking the sampling method into account.

Key Results

Nectar depths and proboscis lengths both exhibited right-skewed frequency distributions across species and individuals. Species-based size matching was equally close for plants, independent of nectar depth, but differed significantly for pollinators of dissimilar proboscis length. The observed patterns were predicted well by a model considering size distributions across species. Observed size matching was closer when relative abundances of species were included, especially for flowers with openly accessible nectar and pollinators with long proboscises, but was predicted somewhat less successfully by the model that included abundances.

Conclusions

The results suggest that in addition to size thresholds and species abundances, size distributions are important for understanding interaction patterns in plant–pollinator webs. It is likely that the understanding will be improved further by characterizing for entire communities how nectar production of flowers and energetic requirements of pollinators covary with size, and how sampling methods influence the observed interaction patterns.Key words: Plant–pollinator community, flower morphology, generalization, nectar, pollination network, body size, size matching, specialization  相似文献   

7.
Extinction and artificial reduction in the size of geographical ranges of many species have occurred extensively across the globe because of human activities. In particular, Australian mammals have suffered heavily in the last two hundred years, with the highest number of reported cases of mammal extinctions anywhere. In the present study, we investigated the extent to which human impact has affected contemporary macroecological patterns in Australian terrestrial mammals. After examining patterns relating to body size and range size among the contemporary mammal fauna, we removed the effects of the last two hundred years of human impact by exploring patterns in the pre‐European assemblage. This permitted us to determine whether contemporary macroecological patterns are distortions of pre‐European patterns. In contrast to the expected pattern of a significant positive relationship between body size and range size, our results showed no significant association for the complete fauna in both cross‐species and phylogenetic analyses, even when data were corrected for species extinctions and range reductions. Analyses within families and among species with the same dietary strategy revealed three significant positive relationships (Macropodidae, Peramelidae, and herbivores) and one significant negative relationship (insectivores) within the contemporary assemblage that disappeared when the pre‐European assemblage was analysed. A positive relationship also emerged in the pre‐European assemblage for the Vombatidae that was not apparent in the contemporary fauna. Thus, correcting for human impact revealed important distortions among contemporary macroecological relationships that have been brought about by human‐induced range reduction and extinction. These findings not only provide further evidence that the Australian continent presents a unique and valuable opportunity with which to test the generality of macroecological patterns, but they also have important ramifications for the analysis and interpretation of contemporary macroecological datasets.  相似文献   

8.
The benthos of the southeastern Chukchi Sea shelf is typified by high faunal abundance and biomass resulting from settlement of a large proportion of seasonal phytoplankton under highly nutritious offshore Bering Shelf Anadyr Water (BSAW). In contrast, inshore Alaska Coastal Water (ACW) is much less productive. Yet the Chukchi Bight and Kotzebue Sound, located under ACW in the southeastern Chukchi Sea, contain a substantial faunal abundance and biomass of invertebrates, fishes and marine mammals. We examined food web structure to gain an understanding of how a relatively rich benthic fauna with a high biomass can be supported under ACW with a supposedly low flux of carbon to the benthos. We measured stable isotope (δ13C and δ15N) values of selected organisms (from zooplankton to fishes) as markers of food sources and trophic position to compare fauna on the shelf under BSAW with that in the Chukchi Bight and Kotzebue Sound under ACW. Relative isotope position of organisms in all three regions was similar, even though some pelagic species within the Sound were depleted in δ13C compared to the other regions. We attribute the depletion to the influence of terrestrially derived carbon. We suggest that the hydrodynamics along an oceanic front between the Chukchi Shelf and the Chukchi Bight support the advection of nutrient-rich POC into the Bight and Sound as additional food sources to local production. We conclude that local conditions and multiple POC sources in the Bight and Sound support the substantial population of benthic invertebrates and the fishes, seabirds, and marine mammals that feed on them.  相似文献   

9.
Body size is a major factor constraining the trophic structure and functioning of ecological communities. Food webs are known to respond to changes in basal resource abundance, and climate change can initiate compounding bottom-up effects on food-web structure through altered resource availability and quality. However, the effects of climate and co-occurring global changes, such as nitrogen deposition, on the density and size relationships between resources and consumers are unknown, particularly in host–parasitoid food webs, where size structuring is less apparent. We use a Bayesian modelling approach to explore the role of consumer and resource density and body size on host–parasitoid food webs assembled from a field experiment with factorial warming and nitrogen treatments. We show that the treatments increased resource (host) availability and quality (size), leading to measureable changes in parasitoid feeding behaviour. Parasitoids interacted less evenly within their host range and increasingly focused on abundant and high-quality (i.e. larger) hosts. In summary, we present evidence that climate-mediated bottom-up effects can significantly alter food-web structure through both density- and trait-mediated effects.  相似文献   

10.
Although the agricultural use of genetically engineered (GE) plants has been employed extensively, its adoption is still controversial and its impact on arthropods has rarely been scrutinized at the community level. If this technology is aimed at a drastic reduction of a key community component, significant community-level impact is expected and needs to be assessed. Thus, food web analysis was used to assess the short-term impact of genetically modified maize plants, Zea mays L. (Poaceae), expressing insecticidal proteins of the bacterium Bacillus thuringiensis Berliner (i.e., Bt maize), on the associated arthropod assemblage in a neotropical scenario. Arthropods associated with winter and summer cultivations with Bt and non-Bt (isoline) maize were thus sampled using sweep nets and whole-plant collections throughout the plant phenological cycle. The collected information was used to build a plant-consumer-predator trivariate network based on data of individual arthropod body mass, numerical abundance, and biomass abundance using food web analysis. Eighty-five arthropod species were sampled, and whereas cultivation season significantly affected arthropod species richness and abundance, only marginal differences existed between maize hybrids (Bt vs. non-Bt). The recognized food webs also indicated significant differences between seasons. In contrast, Bt-maize-hosted food webs were similar to those of the non-Bt isoline indicating no significant impact on arthropod food webs. Nonetheless, Bt maize did not provide significant control of the target pest species, the fall armyworm, nor did it lead to higher crop yield, raising questions about its current usefulness in the region.  相似文献   

11.
Microcosms with three different food web structures and phosphorus (P) limited growth medium were used to study the interactions between P and organic carbon (C) fractions in pelagic food webs. The cultures were run with low dilution to allow the biological processes to determine the outcome. A double isotope technique was used to follow the C and P compartments. In all systems the primary production was P limited. The measured P:C ratios and the observed accumulation of degradable dissolved organic carbon (DOC) indicated that the growth of heterotrophic bacteria was also P limited. The presence of neither algal grazers nor flagellates feeding on bacteria altered the limitation pattern. A net loss of P from the bacterial fraction was observed after the bloom. Different strategies for nutrient aquisition and growth are proposed as mechanisms enabling simultaneous P limitation of algae and bacteria, and a concomitant accumulation of degradable DOC. The ability of the algae to grow with low P:C ratio keeps the regeneration of P through grazers low enough to cause sustained P limitation of both algae and bacteria. The grazers were important producers of DOC when present. This implies that the usual assumption of carbon limited bacterial growth may lead to wrong conclusions regarding the dynamics of plankton communities and the DOC pool.  相似文献   

12.
Most harbour porpoises found dead on the north-east coast of Scotland show signs of attack by sympatric bottlenose dolphins, but the reason(s) for these violent interactions remain(s) unclear. Post-mortem examinations of stranded bottlenose dolphins indicate that five out of eight young calves from this same area were also killed by bottlenose dolphins. These data, together with direct observations of an aggressive interaction between an adult bottlenose dolphin and a dead bottlenose dolphin calf, provide strong evidence for infanticide in this population. The similarity in the size range of harbour porpoises and dolphin calves that showed signs of attack by bottlenose dolphins suggests that previously reported interspecific interactions could be related to this infanticidal behaviour. These findings appear to provide the first evidence of infanticide in cetaceans (whales, dolphins and porpoises). We suggest that infanticide must be considered as a factor shaping sociality in this and other species of cetaceans, and may have serious consequences for the viability of small populations.  相似文献   

13.
14.
1. After observing that juvenile roach fed intensively on cyanobacteria and that cyanobacteria were densely colonized by heterotrophic bacteria, we tested whether the bacteria are used by underyearling roach and the extent to which they contribute to the energy requirements of the fish.
2. We radiolabelled attached bacteria in a natural cyanobacterial suspension, fed the fish with these particles, and estimated their assimilation by roach. Biomass of attached bacteria on cyanobacteria increased with the proportion of the cyanobacterium Microcystis in total cyanobacteria. Biomass-specific thymidine incorporation of attached bacteria was higher than that of free bacteria.
3. In feeding experiments, we detected assimilation of bacterial biomass into muscle tissue of underyearling roach. Fish consumed Microcystis to a lesser extent compared with Aphanizomenon but assimilation of attached bacteria was higher when roach fed on Microcystis because of the higher biomass of epibacteria on this cyanobacterium. However, biomass of attached bacteria was too low to be an important food source for underyearling roach.
4. We conclude that assimilation of epibacteria from cyanobacteria cannot explain the success of roach in eutrophic lakes.  相似文献   

15.
Several studies published over the last years suggest that the ability of many species to cope with global change will be closely related to the current amount of plasticity for fitness-related traits. Thus, disentangling general patterns in phenotypic flexibility, which could be then included in models aimed to predict changes in species distribution, represent a central goal in the current ecological agenda. The climatic variability hypothesis (CVH) could be considered a timely and promising hypothesis since it provides an explicit link between climatic and geographic variables and phenotypic plasticity. Specifically, the CVH states that as the range of climatic fluctuation experienced by terrestrial animals increases with latitude, individuals at higher latitudes should present greater levels of phenotypic flexibility. Within this framework, here we evaluate the existence of latitudinal patterns in fat body size flexibility—estimated as the difference between maximum and minimum fat body size values observed throughout a year—for 59 lizard species, comprising the first evaluation of the CVH for a trait, other than thermic or metabolic characters, in ectothermic species. Conventional and phylogenetic analyses indicated a positive relationship between fat body size flexibility and latitude, and also between flexibility and temperature variability indexes. Together with previous findings our results suggest that: (1) latitudinal pattern for fitness-related traits, other than thermal characters, are beginning to emerge; (2) latitude is usually a better predictor of phenotypic plasticity than putative climatic variables; (3) hemispheric differences in climatic variability appears to be correlated with hemispheric differences in phenotypic plasticity.  相似文献   

16.
To investigate laying decision and clutch size determination in indeterminate layers, we analysed in-nest activity (nest presence, and copulation, prey deliveries, and entrance frequencies) and female body mass change, as well as their relation to clutch size variation in five Barn Owl pairs (Tyto alba) nesting in eastern France. Body mass of the female and behaviour [copulation frequency, entrance frequency, and prey delivery to the nest by the male (in number and mass)] were monitored using an automated weighing system and a video camera. There was a consistent change of behaviour and foraging activity among pairs ca. 18 days before laying indicating that the females may be tied to the nest at this time. Barn Owls being indeterminate layers have their clutch size determined at the oviposition of the first egg of the clutch. Window correlation analyses between the clutch size and the female body mass gain indicate that the clutch size might be determined no later than a few days before the laying of the first egg. Our results suggest that female Barn Owls may use the pre-laying period to determine the clutch size using cues such as the male food deliveries (a proxy for male quality).  相似文献   

17.
Secondary sexual traits may convey reliable information about males’ ability to resist pathogens and that females may prefer those traits because their genes for resistance would be passed on to their offspring. In many insect species, large males have high mating success and can canalize more resources to the immune function than smaller males. In other species, males use pheromones to identify and attract conspecific mates, and thus, they might function as an honest indicator of a male's condition. The males of orchid bees do not produce pheromones. They collect and store flower volatiles, which are mixed with the volatile blends from other sources, like fungi, sap and resins. These blends are displayed as perfumes during the courtship. In this study, we explored the relationship between inter‐individual variation in body size and blend composition with the males’ phenoloxidase (PO) content in Euglossa imperialis. PO content is a common measure of insect immune response because melanine, its derived molecule, encapsulates parasites and pathogens. Body size and blend composition were related to bees’ phenolic PO content. The inter‐individual variation in body size and tibial contents could indicate differences among males in their skills to gain access to some compounds. The females may evaluate their potential mates through these compounds because some of them are reliable indicators of the males’ capacity to resist infections and parasites.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号