首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 273 毫秒
1.
在体外,利用野生型CYP450BM-3对瓦伦西亚烯进行催化,酶-底物复合物催化NADPH氧化的速率为31±1.0 nmol(nmol P450)-1min-1,但催化产物中没有检测到圆柚酮的生成。突变体R47L/Y51F/F87A与底物复合物催化NADPH氧化的速率高于野生型,为79±6.5 nmol(nmol P450)-1min-1,并在催化产物中检测到圆柚酮的生成,但其产物选择性较差,圆柚酮的含量仅占总产物的6.8%。与此同时,检测了另一个突变体A74G/F87V/L188Q对瓦伦西亚烯的催化效果,发现其与底物复合物对NADPH的氧化速率与突变体R47L/Y51F/F87A相当,但产物中圆柚酮的比率更高,达8.0%。  相似文献   

2.
3.
Replacement of phenylalanine 87 with alanine or glycine (mutant F87A or F87G) greatly increased the H2O2-supported substrate hydroxylation activity of cytochrome P450BM-3, whose original H2O2-supported activity is hardly detectable. On the other hand, replacement of phenylalanine 87 with valine (mutant F87V) did not. In the oxidation of p-nitrophenoxydodecanoic acid (12-pNCA), the turnover numbers of the mutant F87A in the presence of NADPH and O2, or H2O2 were 493 and 162 nmol/min/nmol, respectively. The H2O2-supported F87A hydroxylation activity was further confirmed with free fatty acids as substrates. Moreover, the stability of F87A in H2O2 solutions also largely increased. The order of the stability of the wild type (WT), F87A, and their substrate (12-pNCA)-binding complexes in H2O2 solutions listed from high to low was F87A, WT, F87A substrate-binding complex, and WT substrate-binding complex. We propose that the free space size in the vicinity of the heme iron significantly influences P450BM-3 H2O2-supported activity and H2O2 inactivation.  相似文献   

4.
Cytochrome P450 BM-3 from Bacillus megaterium is a fatty acid hydroxylase exhibiting selectivity for long-chain substrates (12–20 carbons). Replacement of Phe87 in P450 BM-3 by Val (F87V) greatly increased its activity towards a variety of aromatic and phenolic compounds. The apparent initial reaction rates of F87V as to benzothiophene, indan, 2,6-dichlorophenol, and 2-(benzyloxy)phenol were 227, 204, 129, and 385 nmol min–1 nmol–1 P450, which are 220-, 66-, 99-, and 963-fold those of the wild type, respectively. These results indicate that Phe87 plays a critical role in the control of the substrate specificity of P450 BM-3. Furthermore, F87V catalyzed regioselective hydroxylation at the para position of various phenolic compounds. In particular, F87V showed high activity as to the hydroxylation of 2-(benzyloxy)phenol to 2-(benzyloxy)hydroquinone. With F87V as the catalyst, 0.71 mg ml–1 2-(benzyloxy)hydroquinone was produced from 1.0 mg ml–1 2-(benzyloxy)phenol in 4 h, with a molar yield of 66%.  相似文献   

5.
The substrate oxidation rates of P450(BM-3) are unparalleled in the cytochrome P450 (CYP) superfamily of enzymes. Furthermore, the bacterial enzyme, originating from Bacillus megaterium, has been used repeatedly as a model to study the metabolism of mammalian P450s. A specific example is presented where studying P450(BM-3) substrate dynamics can define important enzyme-substrate characteristics, which may be useful in modeling omega-hydroxylation seen in mammalian P450s. In addition, if the reactive species responsible for metabolism can be controlled to produce specific products this enzyme could be a useful biocatalyst. Based on crystal structures and the fact that the P450(BM-3) F87A mutant produces a large isotope in contrast to the native enzyme, we propose that phenylalanine 87 is responsible for hindering substrate access to the active oxygen species for nonnative substrates. Using kinetic isotopes and two aromatic substrates, p-xylene and 4,4'-dimethylbiphenyl, the role phenylalanine 87 plays in active-site dynamics is characterized. The intrinsic KIE is 7.3 +/- 2 for wtP450(BM-3) metabolism of p-xylene. In addition, stoichiometry differences were measured with the native and mutant enzyme and 4,4'-dimethylbiphenyl. The results show a more highly coupled substrate/NADPH ratio in the mutant than in the wtP450(BM-3).  相似文献   

6.
P450 monooxygenases from microorganisms, similar to those of eukaryotic mitochondria, display a rather narrow substrate specificity. For native P450 BM-3, no other substrates than fatty acids or an indolyl-fatty acid derivative have been reported (Li, Q.S., Schwaneberg, U., Fischer, P., Schmid, R.D., 2000. Directed evolution of the fatty-acid hydroxylase P450BM-3 into an indole-hydroxylating catalyst. Chem. Eur. J. 6 (9), 1531-1536). Engineering the substrate specificity of Bacillus megaterium cytochrome P-450 BM3: hydroxylation of alkyl trimethylammonium compounds. Biochem. J. 327, 537-544). We thus were quite surprised to observe, in the course of our investigations on the rational evolution of this enzyme towards mutants, capable of hydroxylating shorter-chain fatty acids, that a triple mutant P450 BM-3 (Phe87Val, Leu188-Gln, Ala74Gly, BM-3 mutant) could efficiently hydroxylate indole, leading to the formation of indigo and indirubin (Li, Q.S., Schwaneberg, U., Fischer, P., Schmid, R.D., 2000. Directed evolution of the fatty-acid hydroxylase P450BM-3 into an indole-hydroxylating catalyst. Chem. Eur. J. 6 (9), 1531-1536). Indole is not oxidized by the wild-type enzyme; it lacks the carboxylate group by which the proper fatty acid substrates are supposed to be bound at the active site of the native enzyme, via hydrogen bonds to the charged amino acid residues Arg47 and Tyr51. Our attempts to predict the putative binding mode of indole to P450 BM-3 or the triple mutant by molecular dynamics simulations did not provide any useful clue. Encouraged by the unexpected activity of the triple mutant towards indole, we investigated in a preliminary, but systematic manner several alkanes, alicyclic, aromatic, and heterocyclic compounds, all of which are unaffected by the native enzyme, for their potential as substrates. We here report that this triple mutant indeed is capable to hydroxylate a respectable range of other substrates, all of which bear little or no resemblance to the fatty acid substrates of the native enzyme.  相似文献   

7.
Cytochrome P450BM-3 catalyzed the reduction of lipophilic aldehydes to alcohols efficiently. A k(cat) of ~25 min(-1) was obtained for the reduction of methoxy benzaldehyde with wild type P450BM-3 protein which was higher than in the isolated reductase domain (BMR) alone and increased in specific P450-domain variants. The reduction was caused by a direct hydride transfer from preferentially R-NADP(2)H to the carbonyl moiety of the substrate. Weak substrate-P450-binding of the aldehyde, turnover with the reductase domain alone, a deuterium incorporation in the product from NADP(2)H but not D(2)O, and no inhibition by imidazole suggests the reductase domain of P450BM-3 as the potential catalytic site. However, increased aldehyde reduction by P450 domain variants (P450BM-3 F87A T268A) may involve allosteric or redox mechanistic interactions between heme and reductase domains. This is a novel reduction of aldehydes by P450BM-3 involving a direct hydride transfer and could have implications for the metabolism of endogenous substrates or xenobiotics.  相似文献   

8.
Cytochrome P450 BM-3 monooxygenase from Bacillus megaterium (CYP102A1) catalyzes the subterminal hydroxylation of fatty acids with a chain length of 12-22 carbons. Wild-type P450 BM-3 oxidizes saturated fatty acids at subterminal positions producing a mixture of omega-1, omega-2 and omega-3 hydroxylated products. Using a rational site-directed mutagenesis approach, three new elements have been introduced into the substrate binding pocket of the monooxygenase, which greatly changed the product pattern of lauric acid hydroxylation. Particularly, substitutions at positions S72, V78 and I263 had an effect on the enzyme regioselectivity. The P450 BM-3 mutants V78A F87A I263G and S72Y V78A F87A were able to oxidize lauric acid not only at delta-position (14% and 16%, respectively), but also produced gamma- and beta-hydroxylated products. delta-Hydroxy lauric and gamma-hydroxy lauric acid are important synthons for the production of the corresponding lactones.  相似文献   

9.
Quorum sensing is the process by which bacteria alter gene regulation in response to their population density. The enzymatic inactivation of quorum signals has shown promise for use in genetically modified organisms resistant to pathogens. We recently characterized the ability of a cytochrome P450, P450BM-3, to oxidize the quorum sensing signals known as acyl homoserine lactones. The oxidation of the acyl homoserine lactones reduced their activity as quorum signals. The enzyme also oxidized the inactive lactonolysis products, acyl homoserines. The enzyme showed similar binding affinity for the acyl homoserine lactones and acyl homoserines. The latter reaction may lead to problems when lactonases and the P450-dependent system are used in tandem, as oxidation of the acyl homoserines produced by lactonolysis in vivo may compete with acyl homoserine lactone oxidation by the cytochrome P450. We report here that a single mutation (R47S) in P450BM-3 is capable of increasing the acyl homoserine lactone: acyl homoserine substrate binding selectivity of the enzyme nearly 250-fold, reducing the potential for competition by acyl homoserines and significantly enhancing the potential for use of P450BM-3 as part of a pathogen resistance system in genetically modified crops.  相似文献   

10.
P450 BM-3是一种具有工业化应用潜力的单加氧酶,可催化饱和脂肪酸羟基化。为提高其在大肠杆菌宿主中的可溶性表达水平,采用乳糖作为诱导剂对P450 BM-3的诱导表达条件进行研究。结果发现:在大肠杆菌的OD600达到0.7~1.5时,添加2.0 g/L的乳糖、30℃诱导10 h可获得最佳诱导效果。与IP TG的诱导效果对比发现:采用乳糖作诱导剂时,菌体生物量提高1.09倍,目标蛋白量提升2.13倍,蛋白包涵体的比例则降低至10%。研究结果表明:乳糖可显著提升P450 BM-3在大肠杆菌中的重组表达水平,并且能够促进p450 BM-3的可溶性表达。  相似文献   

11.
Peroxynitrite (PN) is likely to be generated in vivo from nitric oxide and superoxide. We have previously shown that prostacyclin synthase, a heme-thiolate enzyme essential for regulation of vascular tone, is nitrated and inactivated by submicromolar concentrations of PN [Zou, M.-H. & Ullrich, V. (1996) FEBS Lett. 382, 101-104] and we have studied the effect of heme proteins on the PN-mediated nitration of phenolic compounds in model systems [Mehl, M., Daiber, A. & Ullrich, V. (1999) Nitric Oxide: Biol. Chem. 2, 259-269]. In the present work we show that bolus additions of PN or PN-generating systems, such as SIN-1, can induce the nitration of P450BM-3 (wild-type and F87Y variant), for which we suggest an autocatalytic mechanism. HPLC and MS-analysis revealed that the wild-type protein is selectively nitrated at Y334, which was found at the entrance of a water channel connected to the active site iron center. In the F87Y variant, Y87, which is directly located at the active site, was nitrated in addition to Y334. According to Western blots stained with a nitrotyrosine antibody, this nitration started at 0.5 microM of PN and was half-maximal between 100 and 150 microM of PN. Furthermore, PN caused inactivation of the P450BM-3 monooxygenase as well as the reductase activity with an IC50 value of 2-3 microM. As two thiol residues/protein molecule were oxidized by PN and the inactivation was prevented by GSH or dithiothreitol, but not by uric acid (a powerful inhibitor of the nitration), our data strongly indicate that the inactivation is due to thiol oxidation at the reductase domain rather then to nitration of Y residues. Stopped-flow data presented here support our previous hypothesis that ferryl-species are involved as intermediates during the reactions of P450 enzymes with PN.  相似文献   

12.
Metabolism of the proximate carcinogen trans-3,4-dihydroxy-3,4-dihydrodibenz[c,h]acridine has been examined with rat liver enzymes. The dihydrodiol is metabolized at a rate of 2.4 nmol/nmol of cytochrome P450 1A1/min with microsomes from 3-methylcholanthrene-treated rats, a rate more than 10-fold higher than that observed with microsomes from control or phenobarbital-treated rats. Major metabolises consisted of a diastereomeric pair of bis-dihydrodiols (68-83%), where the new dihydrodiol group has been introduced at the 8,9-position, tetraols derived from bay region 3,4-diol-1,2-epoxides (15-23%), and a small amount of a phenolic dihydrodiol(s) where the new hydroxy group is at the 8,9-position of the substrate. A highly purified monooxygenase system reconstituted with cytochrome P450 1A1 and epoxide hydrolase (17 nmol of metabolites/nmol of cytochrome P450 1A1/min) gave a metabolite profile very similar to that observed with liver microsomes from 3-methylcholanthrene-treated rats. Study of the stereoselectivity of these microsomes established that the (+)-(3S,4S)-dihydrodiol gave mainly the diol epoxide-1 diastereomer, in which the benzylic 4-hydroxyl group and epoxide oxygen are cis. The (-)-(3R,4R)-dihydrodiol gave mainly diol epoxide-2 where these same groups are trans. The major enantiomers of the diastereomeric bis-dihydrodiols are shown to have the same absolute configuration at the 8,9-position. Correlations of circular dichroism spectra suggest this configuration to be (8R,9R). The (8R,9S)-oxide may be their common precursor.  相似文献   

13.
Cytochrome P450 BM-3, a self-sufficient P450 enzyme from Bacillus megaterium that catalyzes the subterminal hydroxylation of long-chain fatty acids, has been engineered into a catalyst for the oxidation of polycyclic aromatic hydrocarbons. The activities of a triplet mutant (A74G/F87V/L188Q) towards naphthalene, fluorene, acenaphthene, acenaphthylene, and 9-methylanthracene were 160, 53, 109, 287, and 22/min, respectively. Compared with the activities of the wild type towards these polycyclic aromatic hydrocarbons, those of the mutant were improved by up to 4 orders of magnitude. The coupling efficiencies of the mutant towards naphthalene, fluorene, acenaphthene, acenaphthylene, and 9-methylanthracene were 11, 26, 5.4, 15, and 3.2%, respectively, which were also improved several to hundreds fold. The high activities of the mutant towards polycyclic aromatic hydrocarbons indicate the potential of engineering P450 BM-3 for the biodegradation of these compounds in the environment.  相似文献   

14.
P450BM-3, a catalytically self-sufficient, soluble bacterial P450, contains on the same polypeptide a heme domain and a reductase domain. P450BM-3 catalyzes the oxidation of short- and long-chain, saturated and unsaturated fatty acids. The three-dimensional structure of the heme domain both in the absence and in the presence of fatty acid substrates has been determined; however, the fatty acid in the substrate-bound form is not adequately close to the heme iron to permit a prediction regarding the stereoselectivity of oxidation. In the case of long-chain fatty acids, the products can also serve as substrate and be metabolized several times. In the current study, we have determined the absolute configuration of the three primary products of palmitic acid hydroxylation (15-, 14-, and 13-OH palmitic acid). While the 15- and 14-hydroxy compounds are produced in a highly stereoselective manner (98% R, 2% S), the 13-hydroxy is a mixture of 72% R and 28% S. We have also examined the binding of these three hydroxy acids to P450BM-3 and shown that only two of them (14-OH and 13-OH palmitic acid) can bind to and be further metabolized by P450BM-3. The results indicate that in contrast to the flexibility of palmitoleic acid bound to the oxidized enzyme, palmitic acid is rigidly bound in the active site during catalytic turnover.  相似文献   

15.
Cytochrome P450 BM-3, a self-sufficient P450 enzyme from Bacillus megaterium that catalyzes the subterminal hydroxylation of long-chain fatty acids, has been engineered into a catalyst for the oxidation of polycyclic aromatic hydrocarbons. The activities of a triplet mutant (A74G/F87V/L188Q) towards naphthalene, fluorene, acenaphthene, acenaphthylene, and 9-methylanthracene were 160, 53, 109, 287, and 22/min, respectively. Compared with the activities of the wild type towards these polycyclic aromatic hydrocarbons, those of the mutant were improved by up to 4 orders of magnitude. The coupling efficiencies of the mutant towards naphthalene, fluorene, acenaphthene, acenaphthylene, and 9-methylanthracene were 11, 26, 5.4, 15, and 3.2%, respectively, which were also improved several to hundreds fold. The high activities of the mutant towards polycyclic aromatic hydrocarbons indicate the potential of engineering P450 BM-3 for the biodegradation of these compounds in the environment.  相似文献   

16.
Metabolism of triphenylene by liver microsomes from control, phenobarbital(PB)-treated rats and 3-methylcholanthrene(MC)-treated rats as well as by a purified system reconstituted with cytochrome P-450c in the absence or presence of purified microsomal epoxide hydrolase was examined. Control microsomes metabolized triphenylene at a rate of 1.2 nmol/nmol of cytochrome P-450/min. Treatment of rats with PB or MC resulted in a 40% reduction and a 3-fold enhancement in the rate of metabolism, respectively. Metabolites consisted of the trans-1,2-dihydrodiol as well as 1-hydroxytriphenylene, and to a lesser extent 2-hydroxytriphenylene. The (-)-1R,2R-enantiomer of the dihydrodiol predominated (70 to 92%) under all incubation conditions. Incubation of racemic triphenylene 1,2-oxide with microsomal epoxide hydrolase produced dihydrodiol which was highly enriched (80%) in the (-)-1R,2R-enantiomer. Experiments with 18O-enriched water showed that attack of water was exclusively at the allylic 2-position of the arene oxide, indicating that the 1R,2S-enantiomer of the oxide was preferentially hydrated by epoxide hydrolase. Thiol trapping experiments indicated that liver microsomes from MC-treated rats produced almost exclusively (greater than 90%) the 1R,2S-enantiomer of triphenylene 1,2-oxide whereas liver microsomes from PB-treated rats formed racemic oxide. The optically active oxide has a half-life for racemization of only approximately 20 s under the incubation conditions. This study may represent the first attempt to address stereochemical consequences of a rapidly racemizing intermediary metabolite.  相似文献   

17.
Here we describe for the first time the formation of a complex of reduced CYP102 (cytochrome P450 BM-3) heme domain with molecular oxygen. To stabilize the oxycomplex, the experiments had to be done under argon atmosphere at cryogenic temperatures (-25 degrees C) in the presence of 50% glycerol. The spectral properties of this species were different from those of another P450-type autosuffisant enzyme, i.e., the neuronal nitric oxide synthase. On the contrary, the oxyferrous complex of CYP102 possesses spectral properties similar to those of complexes of microsomal cytochromes P450, e.g., CYP2B4.  相似文献   

18.
The determinants of the regio- and stereoselective oxidation of fatty acids by cytochrome P450 BM-3 were examined by mutagenesis of residues postulated to anchor the fatty acid or to determine its active site substrate-accessible volume. R47, Y51, and F87 were targeted separately and in combination in order to assess their contributions to arachidonic, palmitoleic, and lauric acid binding affinities, catalytic rates, and regio- and stereoselective oxidation. For all three fatty acids, mutation of the anchoring residues decreased substrate binding affinity and catalytic rates and, for lauric acid, caused a significant increase in the enzyme's NADPH oxidase activity. These changes in catalytic efficiency were accompanied by decreases in the regioselectivity of oxygen insertion, suggesting an increased freedom of substrate movement within the active site of the mutant proteins. The formation of significant amounts of 19-hydroxy AA by the Y51A mutant and of 11,12-EET by the R47A/Y51A/F87V triple mutant, suggest that wild-type BM-3 shields these carbon atoms from the heme bound reactive oxygen by restricting the freedom of AA displacement along the substrate channel, and active site accessibility. These results indicate that binding affinity and catalytic turnover are fatty acid carbon-chain length dependent, and that the catalytic efficiency and the regioselectivity of fatty acid metabolism by BM-3 are determined by active site binding coordinates that control acceptor carbon orientation and proximity to the heme iron.  相似文献   

19.
Crystal structure-based mutagenesis studies on cytochrome P-450(BM-3) have confirmed the importance of R47, Y51, and F87 in substrate binding. Replacing F87 has profound effects on regioselectivity. In contrast, changing either R47 or Y51 alone to other residues results in limited impact on substrate binding affinity. Mutating both, however, leads to large changes. Substrate-induced protein conformational changes not only lead to specific substrate binding in the heme domain, but also affect interactions with the FMN domain. Unlike the microsomal P-450 reductase, the FMN semiquinone is the active electron donor to the heme iron in P-450(BM-3). The crystal structure of P-450(BM-3) heme/FMN bidomain provides important insights into why the FMN semiquinone is the preferred electron donor to the heme as well as how substrate-induced structural changes possibly affect the FMN and heme domain-domain interaction.  相似文献   

20.
We reported previously that the F87W/Y96F/V247L mutant of cytochrome P-450cam (CYP101) from Pseudomonas putida catalyzed the rapid oxidation of lightly chlorinated benzenes, but pentachlorobenzene oxidation was slow (Jones, J. P., O'Hare, E. J., and Wong, L. L. (2001) Eur. J. Biochem. 268, 1460-1467). In the present work, we determined the crystal structure of this mutant with bound 1,3,5-trichlorobenzene. The substrate was bound to crystallographically independent CYP101 molecules in at least three different orientations, which were distinguished by the angle between the benzene ring and the porphyrin, and one orientation contained an Fe-Cl interaction. In another orientation, the substrate was almost parallel to the heme, with a C-H bond closest to the iron. The enzyme/substrate contacts suggested that the L244A mutation should promote the binding of pentachlorobenzene and hexachlorobenzene by creating space to accommodate the extra chlorines. The F87W/Y96F/L244A/V247L mutant thus designed was found to oxidize pentachlorobenzene at a rate of 82.5 nmol (nmol CYP101)(-1) min(-1), 45 times faster than the F87W/Y96F/V247L parent mutant. The rate of hexachlorobenzene oxidation was increased 200-fold, to 2.0 min(-1). Both substrates are oxidized to pentachlorophenol, which is degraded by micro-organisms. In principle, the F87W/Y96F/L244A/V247L mutant could have applications in the bioremediation of polychlorinated benzenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号