首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Helicobacter pylori (H. pylori) plays an essential role in the development of various gastroduodenal diseases; however, no vaccines preventing H. pylori infection have been available now. This study was to evaluate the protective effect of rOmp22–HpaA fusion protein against H. pylori infection in mouse model and to screen the candidate to be used in the development of an oral vaccine against H. pylori. rOmp22, rHpaA, rOmp22+rHpaA, and rOmp22–HpaA groups were used to immunize mice with mLT63 as adjuvant by intragastric route, respectively, four times at 1-week intervals. Two weeks after last immunization, all of the animals were orally challenged with H. pylori NCTC11637 and then were killed after another 2 weeks. The mice gastric tissue of all groups was separated to detect the presence of infection by urease tests, to culture H. pylori, and to observe the histological characteristics. The protective effect against H. pylori challenge in mice immunized with rOmp22–HpaA fusion protein and mLT63 adjuvant was significantly higher than PBS and mLT63 control groups (P < 0.05), but no significant difference was detected among rOmp22, rHpaA, rOmp22+rHpaA, and rOmp22–HpaA groups (P > 0.05). rOmp22–HpaA fusion protein retained immunogenicity and could be used as an antigen candidate in the development of an oral vaccine against H. pylori infection.  相似文献   

2.
Helicobacter pylori is an important human pathogen. Prophylactic immunization with bacterial antigen plus an adjuvant protects mice against challenge with live H. pylori. Surprisingly, it was found that immunizations of mice already infected with Helicobacter also influenced bacterial colonization. This concept of therapeutic immunization is a novel phenomenon. Because H. pylori lives in the lumen of the stomach, it was initially hypothesized that the protective mechanism would involve induction of secretory IgA. However, work with knockout mice has demonstrated that prophylactic immunization is equally effective in mice deficient in IgA and even in microMT mice lacking B lymphocytes. Currently nothing is known about therapeutic vaccination and the effect of immunizing a host with an ongoing ineffective immune response. To address this, we infected B-cell deficient, microMT mice with H. pylori and therapeutically immunized them four times in 3 weeks with bacterial sonicate and cholera toxin adjuvant. These immunizations significantly reduced colonization by H. pylori. The antibody- negative status of the microMT mice was confirmed by ELISA. Thus, therapeutic immunization stimulates an immune response, which reduces H. pylori infection via a mechanism that is antibody independent. How this is achieved remains to be determined, but may well involve a novel immune mechanism.  相似文献   

3.
Previous studies have shown that both permissive (mouse) and partially permissive (rabbit) hosts develop high levels of resistance against Schistosoma mansoni infection after vaccination with a multiple antigen extract (SE) obtained by incubation of living adult worms in saline, plus bacterial adjuvant. To investigate variables influencing SE-induced protection in murine schistosomiasis, a series of distinct vaccination protocols were performed focussing on the immunization dose, carrier systems, route, site and amplitude of challenge infection, and time between immunization and challenge. In addition, a new approach was adopted to evaluate SE protective activity, by means of population analysis of worm burden frequency distributions in a large scale study of vaccination in outbred Swiss mice. Distinct curves of frequency and a drastic difference in worm burden distribution of frequencies from SE-vaccinated x non-vaccinated mice were found. It was shown that SE could generate 75% mean protection in outbred mice even in the absence of adjuvant. In addition SE immunization was also able to induce full protection against lethal infection. SE-induced protection could be modulated by such parameters as dose of SE immunization/challenge interval, and route of cercariae injection. These data show that SE yields very high protective activity in outbred mice, and may provide a further insight for rational design of a vaccine in experimental schistosomiasis.  相似文献   

4.
The efficacy of a new vaccination procedure against Schistosoma mansoni, involving intradermal injection of nonliving antigen combined with the bacterial adjuvant Mycobacterium bovis strain bacillus Calmette Guérin, was tested in several strains of mice. Development of protection against subsequent infection was compared with in vivo skin test reactivity and in vitro humoral reactivity to soluble and surface-associated schistosome antigens. Significant levels of resistance and immune response were displayed by many inbred mouse strains, including C57BL/6J, C3H/HeN, and CBA/J, as well as outbred Swiss-Webster mice. However, no definite correlation was observed between the level of any particular immune response and the level of resistance to challenge S. mansoni infection. Development of protective immunity was also examined in mice with various immune defects, to determine whether these responses are relevant to resistance in this model. Animals with defective specific immediate hypersensitivity response due to deficiencies in IgE (SJL/J) or mast cell (W/Wv) production displayed strong resistance as a result of immunization. Likewise, mice bearing the lpsd (C3H/HeJ) or xid (CBA/N) mutations, affecting cellular or humoral response to certain thymus-independent antigens, developed significant levels of resistance after immunization. A/J mice, with defects in cellular recognition of bacterial endotoxin as well as deficiencies in natural killer cell activity and complement function, also showed significant protective immunity. Thus, these reactivities do not appear to be essential to the resistance against S. mansoni induced by the nonliving vaccine. Two nonresponder strains were identified, P and BALB/c. P mice were defective in specific delayed hypersensitivity response as well as resistance to infection. However, BALB/c mice showed no obvious immune deficiencies at the time of challenge. These results agreed with previous findings in mice immunized by exposure to radiation-attenuated cercariae with one exception; BALB/c mice were protected by vaccination with irradiated cercariae but not by the nonliving vaccine. Thus, further examination of immune response in mice identified in this study as high and low responder strains should allow characterization of critical immune resistance mechanisms induced by the nonliving vaccine, as well as immune mechanisms operating in common between these two models of resistance to S. mansoni.  相似文献   

5.
The aim of this study was to investigate the capacity of oral and parenteral therapeutic immunization to reduce the bacterial colonization in the stomach after experimental Helicobacter pylori infection, and to evaluate whether any specific immune responses are related to such reduction. C57BL/6 mice were infected with H. pylori and thereafter immunized with H. pylori lysate either orally together with cholera toxin or intraperitoneally (i.p.) together with alum using immunization protocols that previously have provided prophylactic protection. The effect of the immunizations on H. pylori infection was determined by quantitative culture of H. pylori from the mouse stomach. Mucosal and systemic antibody responses were analyzed by ELISA in saponin extracted gastric tissue and serum, respectively, and mucosal CD4+ T cell responses by an antigen specific proliferation assay. Supernatants from the proliferating CD4+ T cells were analyzed for Th1 and Th2 cytokines. The oral, but not the parenteral therapeutic immunization induced significant decrease in H. pylori colonization compared to control infected mice. The oral immunization resulted in markedly elevated levels of serum IgG+M as well as gastric IgA antibodies against H. pylori antigen and also increased H. pylori specific mucosal CD4+ T cell proliferation with a Th1 cytokine profile. Although the parenteral immunization induced dramatic increases in H. pylori specific serum antibody titers, no increases in mucosal antibody or cellular immune responses were observed after the i.p. immunization compared to control infected mice. These findings suggest that H. pylori specific mucosal immune responses with a Th1 profile may provide therapeutic protection against H. pylori.  相似文献   

6.
The ability to induce a protective response against Helicobacter pylori infection has been investigated by systemic immunization of mice with urease formulated with the cationic lipid DC Chol. This compound acts both as a formulating agent and as an adjuvant and induces a balanced Th1/Th2 response shown to be more effective for protection in our previous studies. Urease-DC Chol induced a significant protection in prophylaxis but not in therapeutic immunization. The protection level was between 1.5 and 2 log reduction of bacterial density measured by quantitative culture compared to unimmunized-infected mice. In parallel, the protective efficacy of other H. pylori antigens formulated in a similar way and administered with DC Chol was tested. These antigens were tested alone or in combination in prophylactic and therapeutic regimens. Some combinations of antigens induced a better prophylactic or therapeutic activity than urease alone (0.5-1.5 log further reduction in prophylaxis and therapy respectively, P<0.05). The combinations that induced the best protection were different in prophylaxis and therapy. In conclusion, DC Chol provides a convenient and efficient method to formulate different antigens even when they are present in non-compatible buffers initially. Moreover, the results obtained in protection against H. pylori with such formulations should lead the way to future clinical trials.  相似文献   

7.
Immunization with Plasmodium yoelii merozoite surface protein (PyMSP)-8 protects mice from lethal malaria but does not prevent infection. Using this merozoite surface protein-based vaccine model, we investigated vaccine- and infection-induced immune responses that contribute to protection. Analysis of prechallenge sera from rPyMSP-8-immunized C57BL/6 and BALB/c mice revealed high and comparable levels of Ag-specific IgG, but differences in isotype profile and specificity for conformational epitopes were noted. As both strains of mice were similarly protected against P. yoelii, we could not correlate vaccine-induced responses with protection. However, passive immunization studies suggested that protection resulted from differing immune responses. Studies with cytokine-deficient mice showed that protection was induced by immunization of C57BL/6 mice only when IL-4 and IFN-gamma were both present. In BALB/c mice, the absence of either IL-4 or IFN-gamma led to predictable shifts in the IgG isotype profile but did not reduce the magnitude of the Ab response induced by rPyMSP-8 immunization. Immunized IL-4-/- BALB/c mice were solidly protected against P. yoelii. To our surprise, immunized IFN-gamma-/- BALB/c mice initially controlled parasite growth but eventually succumbed to infection. Analysis of cytokine production revealed that P. yoelii infection induced two distinct peaks of IFN-gamma that correlated with periods of controlled parasite growth in intact, rPyMSP-8-immunized BALB/c mice. Maximal parasite growth occurred during a period of sustained TGF-beta production. Combined, the data indicate that induction of protective responses by merozoite surface protein-based vaccines depends on IL-4 and IFN-gamma-dependent pathways and that vaccine efficacy is significantly influenced by host responses elicited upon infection.  相似文献   

8.
Epitope vaccine based on the enzyme urease of Helicobacter pylori is a promising option for prophylactic and therapeutic vaccination against H. pylori infection. In our previous study, the epitope vaccine CTB-UA, which was composed of the mucosal adjuvant cholera toxin B subunit (CTB) and an epitope (UreA(183-203)) from the H. pylori urease A subunit (UreA) was constructed. This particular vaccine was shown to have good immunogenicity and immunoreactivity and could induce specific neutralizing antibodies, which exhibited effectively inhibitory effects on the enzymatic activity of H. pylori urease. In this study, the prophylactic and therapeutic efficacy of the epitope vaccine CTB-UA was evaluated in a BALB/c mice model. The experimental results indicated that oral prophylactic or therapeutic immunization with CTB-UA significantly decreased H. pylori colonization compared with oral immunization with PBS. The results also revealed that the protection was correlated with antigen-specific IgG, IgA, and mucosal secretory IgA antibody responses. CTB-UA may be a promising vaccine candidate for the control of H. pylori infection.  相似文献   

9.
减毒鼠伤寒沙门氏菌全长hpaA基因工程菌的构建   总被引:6,自引:0,他引:6  
为构建表达HpaA蛋白的重组减毒鼠伤寒沙门氏菌 ,并探讨以减毒鼠伤寒沙门氏菌为载体构建H .pylori疫苗株的意义 ,应用PCR法从H .pylori基因组DNA中扩增 783bp的hpaA基因 ,经酶切 连接反应将其克隆入原核表达质粒pTrc99A的NcoⅠ SalⅠ位点 ,并进行了核苷酸序列测定。重组质粒转化减毒鼠伤寒沙门氏菌SL3 2 6 1 ,提取重组菌质粒 ,PCR和酶切鉴定 ,筛选阳性克隆。用SDS PAGE电泳和Westernblot进行HpaA表达分析和鉴定 ,用薄层扫描分析HpaA含量。重组菌C5 7BL 6小鼠喂灌 ,分批两d和 1 0d后处死小鼠 ,取脾和末段回肠进行细菌培养 ,挑菌落提质粒鉴定。结果表明 ,经PCR和酶切证实 ,构建了含 783bphpaA基因的重组原核表达质粒 ,并将后者成功转化了减毒鼠伤寒沙门氏菌。重组菌能表达约3 0kDHpaA蛋白 ,重组HpaA量约占全菌体蛋白量的 3 8 9% ,Westernblot证实其有免疫反应性。小鼠重组菌喂灌两d或 1 0d后 ,脾和末段回肠均发现携目的基因的菌落。这些结果提示 ,构建了表达H .pyloriHpaA的重组减毒…  相似文献   

10.
Immunologically mediated protection against H. pylori infection is an attractive alternative to antibiotic treatment. We compared the efficacy of conventional protein vaccination with that of genetic vaccination against experimental infection with H. pylori in mice. For oral immunization, we used the recombinant peptide of an antigenic fragment of UreB (rUreB) or H. pylori-whole cell lysate antigens, and for genetic immunization, we used recombinant pcDNA and pSec plasmids inserted with the fragment of ureB or DNA of the H. pylori genomic library. Mice were challenged with the mouse stomach-adapted H. pylori Sidney Strain. The detection of gastric bacterial colonization was performed by real-time PCR of a 26-kDa Helicobacter-specific gene, and the presence of serum H. pylori-specific antibodies was determined using direct ELISA assay. The most effective treatment appeared to be oral vaccination with rUreB and either intramuscular or intradermal vaccination with DNA of the H. pylori genomic library. Intradermal genetic vaccination with genomic library DNA significantly increased the IgG antibody response. Our study revealed acceptable efficacies of genetic vaccination with DNA of the H. pylori genomic library.  相似文献   

11.
The major immunodominant surface antigen 1 (TgSAG1) of invasive tachyzoites is a vaccine candidate antigen for Toxoplasma gondii. In this study, we developed a recombinant pseudorabies virus (PRV) expressing TgSAG1 (rPRV/SAG1) based on the PRV vaccine strain Bartha K-61 by homologous recombination, in which partial PK and gG genes were deleted. The growth assay of rPRV/SAG1 showed that the recombinant virus can replicate in vitro as efficiently as PRV Bartha K-61, demonstrating that insertion of the TgSAG1 gene in the PK and gG locus of PRV does not affect the replication of PRV. All mice vaccinated with rPRV/SAG1 developed a high level of specific antibody responses against T. gondii lysate antigen (TLA), a strong increase of the splenocyte proliferative response, and significant levels of IFN-gamma and IL-2 production. And the immunization of mice with rPRV/SAG1 elicited strong cytotoxic T lymphocyte (CTL) responses in vitro. These results demonstrate that rPRV/SAG1 could induce significant humoral and cellular Th1 immune responses. Moreover, rPVR/SAG1 immunization induced partial protection (60%) against a lethal challenge with the highly virulent T. gondii RH strain, and neutralizing antibodies against PRV in a BALB/c mouse model. These results suggest that expression of protective antigens of T. gondii in PRV Bartha K-61 is a novel approach towards the development of a vaccine against both animal toxoplasmosis and pseudorabies.  相似文献   

12.
The complexity of protective immunity against liver-stage malaria   总被引:28,自引:0,他引:28  
Sterile protective immunity against challenge with Plasmodium spp. sporozoites can be induced in multiple model systems and humans by immunization with radiation-attenuated Plasmodium spp. sporozoites. The infected hepatocyte has been established as the primary target of this protection, but the underlying mechanisms have not been completely defined. Abs, CD8+ T cells, CD4+ T cells, cytokines (including IFN-gamma and IL-12), and NO have all been implicated as critical effectors. Here, we have investigated the mechanisms of protective immunity induced by immunization with different vaccine delivery systems (irradiated sporozoites, plasmid DNA, synthetic peptide/adjuvant, and multiple Ag peptide) in genetically distinct inbred strains, genetically modified mice, and outbred mice. We establish that there is a marked diversity of T cell-dependent immune responses that mediate sterile protective immunity against liver-stage malaria. Furthermore, we demonstrate that distinct mechanisms of protection are induced in different strains of inbred mice by a single method of immunization, and in the same strain by different methods of immunization. These data underscore the complexity of the murine host response to a parasitic infection and suggest that an outbred human population may behave similarly. Data nevertheless suggest that a pre-erythrocytic-stage vaccine should be designed to induce CD8+ T cell- and IFN-gamma-mediated immune responses and that IFN-gamma responses may represent an in vitro correlate of pre-erythrocytic-stage protective immunity.  相似文献   

13.

Background

The extracellular domain of the influenza A virus protein matrix protein 2 (M2e) is remarkably conserved between various human isolates and thus is a viable target antigen for a universal influenza vaccine. With the goal of inducing protection in multiple mouse haplotypes, M2e-based multiple antigenic peptides (M2e-MAP) were synthesized to contain promiscuous T helper determinants from the Plasmodium falciparum circumsporozoite protein, the hepatitis B virus antigen and the influenza virus hemagglutinin. Here, we investigated the nature of the M2e-MAP-induced B cell response in terms of the distribution of antibody (Ab) secreting cells (ASCs) and Ab isotypes, and tested the protective efficacy in various mouse strains.

Methodology/Principal Findings

Immunization of BALB/c mice with M2e-MAPs together with potent adjuvants, CpG 1826 oligonucleotides (ODN) and cholera toxin (CT) elicited high M2e-specific serum Ab titers that protected mice against viral challenge. Subcutaneous (s.c.) and intranasal (i.n.) delivery of M2e-MAPs resulted in the induction of IgG in serum and airway secretions, however only i.n. immunization induced anti-M2e IgA ASCs locally in the lungs, correlating with M2-specific IgA in the bronchio-alveolar lavage (BAL). Interestingly, both routes of vaccination resulted in equal protection against viral challenge. Moreover, M2e-MAPs induced cross-reactive and protective responses to diverse M2e peptides and variant influenza viruses. However, in contrast to BALB/c mice, immunization of other inbred and outbred mouse strains did not induce protective Abs. This correlated with a defect in T cell but not B cell responsiveness to the M2e-MAPs.

Conclusion/Significance

Anti-M2e Abs induced by M2e-MAPs are highly cross-reactive and can mediate protection to variant viruses. Although synthetic MAPs are promising designs for vaccines, future constructs will need to be optimized for use in the genetically heterogeneous human population.  相似文献   

14.
Based on the very high prevalence of diseases caused by Helicobacter pylori, particularly in the developing world, and the rapid emergence of antibiotic resistance among clinical isolates, there is a strong rationale for an effective vaccine against H. pylori. In this review we describe recent promising candidate vaccines and prophylactic or therapeutic immunization strategies for use against H. pylori, as well as studies to identify immune responses that are related to protection in experimental animals. We also describe identification of different types of immune responses that may be related to protection against symptoms based on comparisons of H. pylori-infected patients with duodenal ulcers or gastric cancer and asymptomatic carriers. We conclude that there is still a strong need to clarify the main protective immune mechanisms against H. pylori as well as to identify a cocktail of strong protective antigens, or recombinant bacterial strains that express such antigens, that could be administered by a regimen that gives rise to effective immune responses in humans.  相似文献   

15.
Immunostimulatory CpG oligodeoxynucleotides (ODN) have proven effective as adjuvants for protein-based vaccines, but their impact on immune responses induced by live viral vectors is not known. We found that addition of CpG ODN to modified vaccinia Ankara (MVA) markedly improved the induction of longer-lasting adaptive protective immunity in BALB/c mice against intranasal pathogenic vaccinia virus (Western Reserve; WR). Protection was mediated primarily by CD8(+) T cells in the lung, as determined by CD8-depletion studies, protection in B cell-deficient mice, and greater protection correlating with CD8(+) IFN-gamma-producing cells in the lung but not with those in the spleen. Intranasal immunization was more effective at inducing CD8(+) T cell immunity in the lung, and protection, than i.m. immunization. Addition of CpG ODN increased the CD8(+) response but not the Ab response. Depletion of CD4 T cells before vaccination with MVA significantly diminished protection against pathogenic WR virus. However, CpG ODN delivered with MVA was able to substitute for CD4 help and protected CD4-depleted mice against WR vaccinia challenge. This study demonstrates for the first time a protective adjuvant effect of CpG ODN for a live viral vector vaccine that may overcome CD4 deficiency in the induction of protective CD8(+) T cell-mediated immunity.  相似文献   

16.
Zika virus (ZIKV) emerged as an important infectious disease agent in Brazil in 2016. Infection usually leads to mild symptoms, but severe congenital neurological disorders and Guillain-Barré syndrome have been reported following ZIKV exposure. Creating an effective vaccine against ZIKV is a public health priority. We describe the protective effect of an already licensed attenuated yellow fever vaccine (YFV, 17DD) in type-I interferon receptor knockout mice (A129) and immunocompetent BALB/c and SV-129 (A129 background) mice infected with ZIKV. YFV vaccination provided protection against ZIKV, with decreased mortality in A129 mice, a reduction in the cerebral viral load in all mice, and weight loss prevention in BALB/c mice. The A129 mice that were challenged two and three weeks after the first dose of the vaccine were fully protected, whereas partial protection was observed five weeks after vaccination. In all cases, the YFV vaccine provoked a substantial decrease in the cerebral viral load. YFV immunization also prevented hippocampal synapse loss and microgliosis in ZIKV-infected mice. Our vaccine model is T cell-dependent, with AG129 mice being unable to tolerate immunization (vaccination is lethal in this mouse model), indicating the importance of IFN-γ in immunogenicity. To confirm the role of T cells, we immunized nude mice that we demonstrated to be very susceptible to infection. Immunization with YFV and challenge 7 days after booster did not protect nude mice in terms of weight loss and showed partial protection in the survival curve. When we evaluated the humoral response, the vaccine elicited significant antibody titers against ZIKV; however, it showed no neutralizing activity in vitro and in vivo. The data indicate that a cell-mediated response promotes protection against cerebral infection, which is crucial to vaccine protection, and it appears to not necessarily require a humoral response. This protective effect can also be attributed to innate factors, but more studies are needed to strengthen this hypothesis. Our findings open the way to using an available and inexpensive vaccine for large-scale immunization in the event of a ZIKV outbreak.  相似文献   

17.
Background: Adjuvant‐free vaccines have many benefits, including decreased cost and toxicity. We examined the protective effect of systemic vaccination with adjuvant‐free formalin‐fixed Helicobacter pylori or bacterial lysate and the ability of this vaccine to induce protection against heterologous challenge. Materials and Methods: Mice were vaccinated subcutaneously with H. pylori 11637 lysate or formalin‐fixed bacteria, with or without ISCOMATRIXTM adjuvant, then orally challenged with H. pylori SS1. Serum was taken prior to challenge to examine specific antibody levels induced by the vaccinations, and protection was assessed by colony‐forming assay. Results: Vaccination with H. pylori 11637 lysate or formalin‐fixed bacteria delivered systemically induced significantly higher levels of Helicobacter‐specific serum IgG than the control, unvaccinated group and orally vaccinated group. After heterologous challenge with H. pylori SS1, all vaccinated groups had significantly lower levels of colonization compared with unvaccinated, control mice, regardless of the addition of adjuvant or route of delivery. Protection induced by systemic vaccination with whole bacterial preparations, without the addition of adjuvants, was only associated with a mild cellular infiltration into the gastric mucosa, with no evidence of atrophy. Conclusions: Subcutaneous vaccination using unadjuvanted formalin‐fixed H. pylori has the potential to be a simple, cost‐effective approach to the development of a Helicobacter vaccine. Importantly, this vaccine was able to induce protection against heterologous challenge, a factor that would be crucial in any human Helicobacter vaccine. Further studies are required to determine mechanisms of protection and to improve protective ability.  相似文献   

18.
The potential threat of smallpox use in a bioterrorist attack has heightened the need to develop an effective smallpox vaccine for immunization of the general public. Vaccination with the current smallpox vaccine, Dryvax, produces protective immunity but may result in adverse reactions for some vaccinees. A subunit vaccine composed of protective vaccinia virus proteins should avoid the complications arising from live-virus vaccination and thus provide a safer alternative smallpox vaccine. In this study, we assessed the protective efficacy and immunogenicity of a multisubunit vaccine composed of the A27L and D8L proteins from the intracellular mature virus (IMV) form and the B5R protein from the extracellular enveloped virus (EEV) form of vaccinia virus. BALB/c mice were immunized with Escherichia coli-produced A27L, D8L, and B5R proteins in an adjuvant consisting of monophosphoryl lipid A and trehalose dicorynomycolate or in TiterMax Gold adjuvant. Following immunization, mice were either sacrificed for analysis of immune responses or lethally challenged by intranasal inoculation with vaccinia virus strain Western Reserve. We observed that three immunizations either with A27L, D8L, and B5R or with the A27L and B5R proteins alone induced potent neutralizing antibody responses and provided complete protection against lethal vaccinia virus challenge. Several linear B-cell epitopes within the three proteins were recognized by sera from the immunized mice. In addition, protein-specific cellular responses were detected in spleens of immunized mice by a gamma interferon enzyme-linked immunospot assay using peptides derived from each protein. Our data suggest that a subunit vaccine incorporating bacterially expressed IMV- and EEV-specific proteins can be effective in stimulating anti-vaccinia virus immune responses and providing protection against lethal virus challenge.  相似文献   

19.
Human respiratory syncytial virus (RSV) is a serious pediatric pathogen of the lower respiratory tract worldwide. There is currently no clinically approved vaccine against RSV infection. Recently, it has been shown that a replication-deficient first generation adenoviral vector (FGAd), which encodes modified RSV attachment glycoprotein (G), elicits long-term protective immunity against RSV infection in mice. The major problem in developing such a vaccine is that G protein lacks MHC-I-restricted epitopes. However, RSV fusion glycoprotein (F) is a major cytotoxic T-lymphocyte epitope in humans and mice, therefore, an FGAd-encoding F (FGAd-F) was constructed and evaluated for its potential as an RSV vaccine in a murine model. Intranasal (i.n.) immunization with FGAd-F generated serum IgG, bronchoalveolar lavage secretory IgA, and RSV-specific CD8+ T-cell responses in BALB/c mice, with characteristic balanced or mixed Th1/Th2 CD4+ T-cell responses. Serum IgG was significantly elevated after boosting with i.n. FGAd-F. Upon challenge, i.n. immunization with FGAd-F displayed an effective protective role against RSV infection. These results demonstrate FGAd-F is able to induce effective protective immunity and is a promising vaccine regimen against RSV infection.  相似文献   

20.
DNA vaccines are usually given by intramuscular injection or by gene gun delivery of DNA-coated particles into the epidermis. Induction of mucosal immunity by targeting DNA vaccines to mucosal surfaces may offer advantages, and an oral vaccine could be effective for controlling infections of the gut mucosa. In a murine model, we obtained protective immune responses after oral immunization with a rotavirus VP6 DNA vaccine encapsulated in poly(lactide-coglycolide) (PLG) microparticles. One dose of vaccine given to BALB/c mice elicited both rotavirus-specific serum antibodies and intestinal immunoglobulin A (IgA). After challenge at 12 weeks postimmunization with homologous rotavirus, fecal rotavirus antigen was significantly reduced compared with controls. Earlier and higher fecal rotavirus-specific IgA responses were noted during the peak period of viral shedding, suggesting that protection was due to specific mucosal immune responses. The results that we obtained with PLG-encapsulated rotavirus VP6 DNA are the first to demonstrate protection against an infectious agent elicited after oral administration of a DNA vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号